Article Text

Download PDFPDF

Fatal head and neck injuries in military underbody blast casualties
  1. Sarah K Stewart1,
  2. A P Pearce1,2 and
  3. Jon C Clasper2,3
  1. 1 Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
  2. 2 Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, London, UK
  3. 3 Department of Trauma and Orthopaedics, Frimley Park Hospital, Frimley, UK
  1. Correspondence to A P Pearce, Centre for Blast Injury Studies, Imperial College London, London SW7 2AZ, UK; a.pearce15{at}


Introduction Death as a consequence of underbody blast (UBB) can most commonly be attributed to central nervous system injury. UBB may be considered a form of tertiary blast injury but is at a higher rate and somewhat more predictable than injury caused by more classical forms of tertiary injury. Recent studies have focused on the transmission of axial load through the cervical spine with clinically relevant injury caused by resultant compression and flexion. This paper seeks to clarify the pattern of head and neck injuries in fatal UBB incidents using a pragmatic anatomical classification.

Methods This retrospective study investigated fatal UBB incidents in UK triservice members during recent operations in Afghanistan and Iraq. Head and neck injuries were classified by anatomical site into: skull vault fractures, parenchymal brain injuries, base of skull fractures, brain stem injuries and cervical spine fractures. Incidence of all injuries and of each injury type in isolation was compared.

Results 129 fatalities as a consequence of UBB were identified of whom 94 sustained head or neck injuries. 87 casualties had injuries amenable to analysis. Parenchymal brain injuries (75%) occurred most commonly followed by skull vault (55%) and base of skull fractures (32%). Cervical spine fractures occurred in only 18% of casualties. 62% of casualties had multiple sites of injury with only one casualty sustaining an isolated cervical spine fracture.

Conclusion Improvement of UBB survivability requires the understanding of fatal injury mechanisms. Although previous biomechanical studies have concentrated on the effect of axial load transmission and resultant injury to the cervical spine, our work demonstrates that cervical spine injuries are of limited clinical relevance for UBB survivability and that research should focus on severe brain injury secondary to direct head impact.

  • blast
  • brain injury
  • underbody blast
  • survivability

This is an open access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See:

View Full Text

Statistics from


  • Contributors SKS and PP performed the data search. All authors contributed to the data analysis and writing and editing of the manuscript.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests None declared.

  • Patient consent Not required.

  • Provenance and peer review Not commissioned; internally peer reviewed.

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.