Article Text

Download PDFPDF
Neuroergonomic and psychometric evaluation of full-face crew oxygen masks respiratory tolerance: a proof-of-concept study

Abstract

Introduction Preventing in-flight hypoxia in pilots is typically achieved by wearing oxygen masks. These masks must be as comfortable as possible to allow prolonged and repeated use. The consequences of mask-induced facial contact pressure have been extensively studied, but little is known about mask-induced breathing discomfort. Because breathlessness is a strong distractor and engages cerebral resources, it could negatively impact flying performances.

Methods Seventeen volunteers (age 20–32) rated respiratory discomfort while breathing with no mask and with two models of quick-donning full-face crew oxygen masks with regulators (mask A, mask B). Electroencephalographic recordings were performed to detect a putative respiratory-related cortical activation in response to inspiratory constraint (experiment 1, n=10). Oxygen consumption was measured using indirect calorimetry (experiment 2, n=10).

Results With mask B, mild respiratory discomfort was reported significantly more frequently than with no mask or mask A (experiment 1: median respiratory discomfort on visual analogue scale 0.9 cm (0.5–1.4), experiment 1; experiment 2: 2 cm (1.7–2.9)). Respiratory-related cortical activation was present in 1/10 subjects with no mask, 1/10 with mask A and 6/10 with mask B (significantly more frequently with mask B). Breathing pattern, sigh frequency and oxygen consumption were not different.

Conclusions In a laboratory setting, breathing through high-end aeronautical full-face crew oxygen masks can induce mild breathing discomfort and activate respiratory-related cortical networks. Whether or not this can occur in real-life conditions and have operational consequences remains to be investigated. Meanwhile, respiratory psychometric and neuroergonomic approaches could be worth integrating to masks development and evaluation processes.

  • dyspnea
  • control of breathing
  • respiratory-related cortical activation
  • in-flight hypoxia
  • oxygen masks
View Full Text

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.