Article Text

Download PDFPDF
Effect of ballistic impacts on batteries and the potential for injury
  1. Alex Rabbitt1,2,
  2. I Horsfall1,3 and
  3. D J Carr1,4
  1. 1 Impact and Armour Group, Cranfield University, Shrivenham, UK
  2. 2 1 R WELSH, Lucknow Barracks, Tidworth, UK
  3. 3, Shrivenham, UK
  4. 4 Defence and Security Accelerator, Porton Down, UK
  1. Correspondence to Professor D J Carr, Defence and Security Accelerator, Salisbury SP4 OJQ, UK; djcarr{at}


Introduction On military operations, ballistic impact damage is possible to lithium ion (Li-ion) batteries worn on the body by military personnel and the potential for exothermic reactions may result in injury. This paper investigated the effect of impact on batteries that might be worn in front or behind body armour.

Methods Li-ion batteries were subjected to ballistic impact both without and in combination with body armour using 7.62×39 mm ammunition (mean velocity=769 m/s) at charge levels up to 40%. The effect of penetrating impacts on charged batteries was also investigated using an outdoor range.

Results The backface signature due to ballistic impact was reduced by including a battery pack between fabric body armour and an armour plate, however the batteries were crushed and mechanically disrupted. Ballistic impacts on batteries mounted in front of an armour plate resulted in perforation of the batteries. Increases in temperature, fire and toxic gas emission were noted when batteries were penetrated by an impact.

Conclusions Batteries provided limited ballistic protection disproving the hypothesis that batteries could replace or enhance existing body armour solutions. Ballistic impact of charged batteries could lead to injury due to heat/flame and toxic discharge. It is recommended that batteries need to be carried in a position from which they can be rapidly removed from contact with the body.

  • body armour
  • batteries
  • injury

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


  • Contributors AR suggested this project which was supervised by IH and DJC. DJC wrote this paper from AR's MSc thesis. IH and AR commented on the manuscript.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests None declared.

  • Patient consent Not required.

  • Ethics approval No human participants were involved in this work, therefore no approvals were required.

  • Provenance and peer review Not commissioned; externally peer reviewed.