SUXAMETHONIUM SENSITIVITY
A Family Study
Military Hospital, Catterick *

SUMMARY: A case of sensitivity to suxamethonium is described. Investigation of her immediate family enabled them to be reassured that they have only a minimal risk of exhibiting similar sensitivity.

Introduction
Suxamethonium, a depolarising muscle relaxant, was introduced into anaesthetic practice in 1951. Its action is normally rapidly terminated due to its destruction by an enzyme present in plasma—cholinesterase (acylcholine acyhydrolase, E.C. 3.1.1.8.). Soon after its introduction cases were described where the drug had a prolonged action (Evans et al 1952). These patients had an abnormally low cholinesterase level due, usually, to an inherited defect. They appeared to have an abnormal recessive gene present and were homozygous. Heterozygous individuals had cholinesterase levels overlapping the normal and abnormal (low) plasma concentrations.

Kalow (1960) showed that the cholinesterase of normal plasma was inhibited more strongly by many cholinesterase inhibitors than was that of the atypical cholinesterase. One inhibitor which produced a marked difference was the local anaesthetic dibucaine. Kalow and Genest (1957) called the percentage inhibition produced by a fixed concentration of dibucaine under standard conditions the dibucaine number (DN). The DN differentiates three groups of individuals; the normal homozygote with a DN of less than 80, atypical homozygote DN less than 20 and the heterozygote DN 45-69.

Subsequently it has been realised that further atypical cholinesterases can be identified. Harris and Whittaker (1961) described the fluoride-resistant enzyme. They defined the percentage inhibition produced by a fixed concentration of sodium fluoride under standard conditions as the fluoride number (FN).

Liddell, Lehmann and Silk (1962) found a patient with marked sensitivity to suxamethonium who had no detectable cholinesterase activity. Family data showed this again to be inherited. The patient was shown to be a homozygote with 2 "Silent genes". This gene is an allele of other cholinesterase variants. (Simpson and Kalow, 1964).

Increased cholinesterase activity has been described in a group of individuals who possess a very slow moving fifth band of cholinesterase activity when normal serum is separated by gel electrophoresis. The presence of this C5 band is genetically determined. This variant is not an allele of the other atypical variants but is determined at another locus (Harris et al 1963). Individuals having this electrophoretic variant do not appear to be sensitive to suxamethonium.

These recognised variants of cholinesterase probably represent only a fraction of the possible genetic variants of the enzyme. At present the five well established cholinesterase genes are noted usually by the nomenclature proposed by Motulsky (1964) using the symbol E for esterase. There are two cholinesterase loci E1 and E2. Four variants

* Now: Department of Anaesthetics, St. Mary's Hospital, Paddington, London.
occur at the first locus: \(-E_1^u\) — the usual gene, \(E_1^a\) — the atypical dibucaine-resistant gene, \(E_1^f\) — the atypical fluoride-resistant gene, \(E_1^s\) — the silent gene.

Only two variants are known at the second locus:
- \(E_2^-\) — the usual gene, \(E_2^+\) — the \(C_5\) variant.

The biochemical characteristics, frequency and sensitivity to suxamethonium of the genotypes at the first locus are shown in Table I. (Lehmann and Liddell, 1969).

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Dibucaine number</th>
<th>Fluoride number</th>
<th>Frequency in a British population</th>
<th>Suxamethonium sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygotes</td>
<td>(E_1^u E_1^u)</td>
<td>77—83</td>
<td>57—68</td>
<td>Normal population</td>
</tr>
<tr>
<td></td>
<td>(E_1^a E_1^a)</td>
<td>15—25</td>
<td>20—25</td>
<td>1 in 2,800</td>
</tr>
<tr>
<td></td>
<td>(E_1^f E_1^f)</td>
<td>64—67</td>
<td>34—35</td>
<td>?1 in 300,000</td>
</tr>
<tr>
<td></td>
<td>(E_1^s E_1^s)</td>
<td>—</td>
<td>—</td>
<td>?1 in 140,000</td>
</tr>
<tr>
<td>Heterozygotes</td>
<td>(E_1^u E_1^a)</td>
<td>52—69</td>
<td>42—55</td>
<td>1 in 26</td>
</tr>
<tr>
<td></td>
<td>(E_1^u E_1^f)</td>
<td>71—78</td>
<td>50—55</td>
<td>?1 in 280</td>
</tr>
<tr>
<td></td>
<td>(E_1^u E_1^s)</td>
<td>77—83</td>
<td>57—68</td>
<td>?1 in 190</td>
</tr>
<tr>
<td></td>
<td>(E_1^a E_1^f)</td>
<td>47—53</td>
<td>31—39</td>
<td>?1 in 29,000</td>
</tr>
<tr>
<td></td>
<td>(E_1^a E_1^s)</td>
<td>15—25</td>
<td>20—25</td>
<td>?1 in 20,000</td>
</tr>
<tr>
<td></td>
<td>(E_1^f E_1^s)</td>
<td>64—67</td>
<td>34—35</td>
<td>?1 in 200,000</td>
</tr>
</tbody>
</table>

This paper reports a further individual with an abnormal response to suxamethonium and the results of an investigation into her family. An assessment is made of the risk of suxamethonium sensitivity in future members of her family.

Case history

In July 1971, Mrs. S. H. was anaesthetised for an evacuation of her uterus following an incomplete abortion. Following premedication with atropine, anaesthesia was induced with thiopentone. Intubation was performed after suxamethonium (50 mg). Anaesthesia was maintained with \(N_2O/\text{O}_2\) with positive pressure ventilation and supplemented with pentazocine (15 mg I.V.). At the end of the procedure (10 minutes), no sign of return of muscle power could be demonstrated although, in the absence of a nerve stimulator, it could only be surmised that there may be a defect in neuromuscular conduction. The patient was ventilated with 50:50 \(N_2O/\text{O}_2\) until spontaneous muscle activity returned three hours later.

At the return of adequate muscle power she was extubated, after which she had a normal postoperative recovery with complete amnesia for the whole period.
Suxamethonium Sensitivity

Investigation.

Postoperatively, investigation of the patient’s serum revealed low cholinesterase activity and her dibucaine number was compatible with her being homozygous for the atypical cholinesterase variant $E_1^a E_1^a$. Further specimens of serum from her and twenty-four of her twenty-eight living close relations were investigated by the Cholinesterase Research Unit, Chemistry Department, University of Exeter, Devon.

The results, shown in Table 2, demonstrate that she is the only member of her family to be homozygous for the atypical dibucaine resistant gene. Nine other members of the family are heterozygous. The family tree has been constructed in Fig. 1.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Number</th>
<th>Cholinesterase activity</th>
<th>Dibucaine number</th>
<th>Fluoride number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td>80—120u</td>
<td>77—83</td>
<td>57—68</td>
</tr>
<tr>
<td>Propositus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_1^a E_1^a$</td>
<td>III 7</td>
<td>42</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Heterozygotes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 4</td>
<td></td>
<td>62</td>
<td>64</td>
<td>46</td>
</tr>
<tr>
<td>II 4</td>
<td></td>
<td>58</td>
<td>64</td>
<td>44</td>
</tr>
<tr>
<td>II 5</td>
<td></td>
<td>79</td>
<td>62</td>
<td>45</td>
</tr>
<tr>
<td>II 6</td>
<td></td>
<td>71</td>
<td>63</td>
<td>48</td>
</tr>
<tr>
<td>II 7</td>
<td></td>
<td>73</td>
<td>63</td>
<td>48</td>
</tr>
<tr>
<td>III 8</td>
<td></td>
<td>65</td>
<td>68</td>
<td>49</td>
</tr>
<tr>
<td>III 12</td>
<td></td>
<td>76</td>
<td>64</td>
<td>53</td>
</tr>
<tr>
<td>III 13</td>
<td></td>
<td>70</td>
<td>64</td>
<td>50</td>
</tr>
<tr>
<td>IV 3</td>
<td></td>
<td>104</td>
<td>64</td>
<td>44</td>
</tr>
<tr>
<td>Homozygotes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 3</td>
<td></td>
<td>76</td>
<td>80</td>
<td>63</td>
</tr>
<tr>
<td>II 1</td>
<td></td>
<td>126</td>
<td>79</td>
<td>58</td>
</tr>
<tr>
<td>II 2</td>
<td></td>
<td>108</td>
<td>81</td>
<td>61</td>
</tr>
<tr>
<td>II 3</td>
<td></td>
<td>87</td>
<td>79</td>
<td>56</td>
</tr>
<tr>
<td>III 4</td>
<td></td>
<td>146</td>
<td>80</td>
<td>63</td>
</tr>
<tr>
<td>III 6</td>
<td></td>
<td>78</td>
<td>80</td>
<td>62</td>
</tr>
<tr>
<td>III 9</td>
<td></td>
<td>103</td>
<td>82</td>
<td>62</td>
</tr>
<tr>
<td>III 10</td>
<td></td>
<td>112</td>
<td>82</td>
<td>58</td>
</tr>
<tr>
<td>III 11</td>
<td></td>
<td>100</td>
<td>82</td>
<td>60</td>
</tr>
<tr>
<td>III 14</td>
<td></td>
<td>104</td>
<td>82</td>
<td>60</td>
</tr>
<tr>
<td>III 15</td>
<td></td>
<td>108</td>
<td>82</td>
<td>58</td>
</tr>
<tr>
<td>III 16</td>
<td></td>
<td>115</td>
<td>80</td>
<td>62</td>
</tr>
<tr>
<td>III 17</td>
<td></td>
<td>102</td>
<td>80</td>
<td>57</td>
</tr>
<tr>
<td>IV 1</td>
<td></td>
<td>136</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

Discussion

In 1968 Whittaker and Vickers initiated the Cholinesterase Research Unit. This unit estimates cholinesterase activity, and dibucaine and fluoride numbers. A standard methodology is used to prevent erroneous genotyping.

Apnoea following anaesthesia is a common problem. When it is suspected that the cause may be due to an atypical cholinesterase, then it is essential that the patient's
cholinesterase genotype is determined. If the results are abnormal it is incumbent upon
the anaesthetist both to warn the other members of the family and also to determine
their genotype so that their risk during or after a possible future anaesthetic is reduced.

This study has enabled us to reassure the other members of the propositus' family
that they run minimal risk of being sensitive to suxamethonium. However, as the
incidence of the heterozygote $E_i^s E_i^u$ is 1:26 and of the other heterozygotes $E_i^f E_i^u$
and $E_i^s E_i^u$ are respectively 1:280 and 1:190, the risk of heterozygotes of this family
marrying another heterozygote is 1:22. There is thus a 1:88 chance that a heterozygote
of this family will produce a suxamethonium sensitive child.

Acknowledgements

I am indebted to Dr. Mary Whittaker, Department of Chemistry, University of
Exeter, for the biochemical analysis and advice. Also I am grateful to Dr. J. Norman,
Department of Anaesthetics, Hammersmith Hospital for his encouragement.

REFERENCES