Conservative Management of Splenic Trauma

Maj RA Daoud
FRCS (Eng), FRCS (Glas), FRCS (Gen), RAMC
Specialist Registrar in General Surgery

Mr AK Taghizadeh
FRCS
SHO in General Surgery

Dr RB Pickford
FRCR
Consultant Radiologist

Mr DRB Jones
McH, FRCS
Consultant General Surgeon

Departments of General Surgery and Radiology, Nevill Hall Hospital, Abergavenny

Summary: Since the 1970’s an increasingly conservative approach to splenic trauma has been practised in many countries. Haemodynamically stable patients who have been carefully assessed clinically and radiographically may safely be treated non-operatively. In those patients who require surgery the spleen may be preserved by splenorrhaphy or partial splenectomy. This approach has been practised at our hospital and we present our experience over seven years to show that expectant treatment of splenic injury following trauma is safe.

Introduction

Kocher in 1911 stated that injuries of the spleen should be treated by excision of the gland: "No evil effects follow its removal, while the haemorrhage is effectively stopped". It is now recognised that the spleen has an important immunological and haematological role; its removal carries a number of sequelae, the most important of which is overwhelming post splenectomy sepsis (1). In selected patients with splenic injury careful assessment, combined with non-invasive imaging, good resuscitation and close monitoring will avoid the need for splenectomy. A policy of splenic conservation has been followed in our hospital since 1990. The result of seven years of experience with this method of treatment is presented here.

Patient and Methods

Between 1990 and 1997, seventeen patients with traumatic splenic injury were treated at our hospital. The injuries were for the most part a result of blunt impact from domestic or road traffic accidents. The patients were managed by the General Surgical team in a 430 bed district general hospital. Patients were assessed according to the Advanced Trauma Life Support guide lines. If an intra-abdominal injury was suspected an ultrasound examination was performed by a consultant radiologist. An abdominal CT scan was not considered necessary in any of our patients.

Patients with isolated splenic injury, and no other significant intra or extra abdominal injury were treated non-operatively. They were resuscitated, and then carefully monitored in a high dependency unit. Haematocrit was checked daily. The abdominal ultrasound was repeated at two weeks and again as an outpatient at three months. Patients were advised to avoid vigorous physical activity and contact sports for a period of three months following their injury. They received pneumococcal and Haemophilus Influenza type B vaccinations, and long term prophylactic penicillin.

Patients with splenic injury who were thought to require operative intervention were those who:

- Had suspected additional intra-abdominal injuries
- Significant extra abdominal injuries
- Continued haemodynamic instability despite adequate resuscitation as shown by a persistent tachycardia of more than 100/minute or blood transfusion of more than six units
- Evidence of deterioration whilst on conservative treatment

A retrospective study was made of the patients’ case notes. The details which were recorded were: age, sex, medication, pulse and blood pressure and the number of units of blood transfused, operative details and follow up.

Results

Between 1990 and 1997 a total of seventeen patients with splenic injury were seen.

Nine patients were treated non-operatively with a good result (Table 1). One patient was initially treated non-operatively but required a late operation; he was a 15 year old male who was involved in a motorbike accident, on the fifth day post injury developed a tachycardia of 110/min and generalised abdominal tenderness and therefore underwent laparotomy and splenectomy. This was the only patient in the non-operatively treated group who had been involved in a road traffic accident.

Two patients who were successfully treated in the non-operative group were above 80 years old and were taking warfarin. The mean blood number of units of blood that this group received was 1.5.

Eight patients underwent operative treatment, seven undergoing splenectomy (Table 2). Of these, three were involved in road traffic accidents. One patient had additional liver and pancreatic injuries and died three weeks postoperatively. Two patients who suffered relatively minor damage to the spleen but were taking both beta blockers and
Table 1

Patients Treated Non-Operatively for Splenic Injuries

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Type of Trauma</th>
<th>Medication</th>
<th>Pulse</th>
<th>Mean Arterial BP</th>
<th>Number of Blood Units Transfused</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Male</td>
<td>Fell while playing</td>
<td>--</td>
<td>12/min</td>
<td>99 mmHg</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>Fell against bath edge</td>
<td>--</td>
<td>110/min</td>
<td>100 mmHg</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>Male</td>
<td>Fell from a tree</td>
<td>--</td>
<td>100/min</td>
<td>96.6 mmHg</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Male</td>
<td>Punched in abdomen</td>
<td>--</td>
<td>92/min</td>
<td>96.6 mmHg</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>Female</td>
<td>No definite trauma (Infectious Mononucleosis)</td>
<td>--</td>
<td>120/min</td>
<td>96.6 mmHg</td>
<td>--</td>
</tr>
<tr>
<td>42</td>
<td>Male</td>
<td>Hit by iron bar</td>
<td>--</td>
<td>70/min</td>
<td>93.3 mmHg</td>
<td>--</td>
</tr>
<tr>
<td>50</td>
<td>Male</td>
<td>Kicked by a cow</td>
<td>--</td>
<td>70/min</td>
<td>96.6 mmHg</td>
<td>--</td>
</tr>
<tr>
<td>85</td>
<td>Female</td>
<td>Fell over</td>
<td>Warfarin (INR 1.9)</td>
<td>76/min</td>
<td>100 mmHg</td>
<td>4</td>
</tr>
<tr>
<td>88</td>
<td>Female</td>
<td>Fell against a chair</td>
<td>Warfarin (INR 2)</td>
<td>68/min</td>
<td>103.6 mmHg</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2

Patients Treated by Splenectomy

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Type of Trauma</th>
<th>Medication</th>
<th>Pulse</th>
<th>Mean Arterial BP</th>
<th>Number of Blood Units Transfused</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Female</td>
<td>Punched in abdomen</td>
<td>--</td>
<td>160/min</td>
<td>86.6 mmHg</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>Male</td>
<td>Motorbike accident</td>
<td>--</td>
<td>110/min</td>
<td>96.6 mmHg</td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>Male</td>
<td>Road traffic accident: Left rib fracture; left haemothorax; penetrating injury of diaphragm and spleen; fracture right femur.</td>
<td>--</td>
<td>144/min</td>
<td>103.3 mmHg</td>
<td>4</td>
</tr>
<tr>
<td>54</td>
<td>Female</td>
<td>Road traffic accident: Liver & pancreatic injury.</td>
<td>--</td>
<td>102/min</td>
<td>101.3 mmHg</td>
<td>30</td>
</tr>
<tr>
<td>57</td>
<td>Female</td>
<td>Fell over</td>
<td>Warfarin (INR 4) Beta-Blocker</td>
<td>64/min</td>
<td>91.6 mmHg</td>
<td>14</td>
</tr>
<tr>
<td>61</td>
<td>Male</td>
<td>Fell over a ladder one week prior to admission</td>
<td>--</td>
<td>96/min</td>
<td>90 mmHg</td>
<td>8</td>
</tr>
<tr>
<td>67</td>
<td>Male</td>
<td>Fell from bed</td>
<td>Warfarin (INR 2.8) Beta-Blocker</td>
<td>75/min</td>
<td>93 mmHg</td>
<td>8</td>
</tr>
</tbody>
</table>

warfarin became haemodynamically unstable and underwent splenectomy. The mean number of blood units that the operated patients received was 10.8.

In one patient who underwent operative treatment the spleen was conserved. He was injured following a push bike accident, found to have a splenic tear and treated by packing the tear with surgicel. He made an uneventful recovery.

Discussion

Splenectomy has been the mainstay treatment for splenic injury. The complications of splenectomy have however been becoming increasingly apparent. King and Schumacker reported increased susceptibility to infection following splenectomy to treat spherocytosis (2). Overwhelming post-splenectomy infection is well recognised (3) and the incidence has been reported to be as high as 50% in children (4). Prophylactic vaccination and antibiotics do not guarantee protection from fatality (5).

A change in approach to paediatric splenic injury started in the late 1960's based on a number of observations. The chance finding at autopsy of a completely transected yet healed spleen in a child who was thought to have injured his spleen some time previously implied that major splenic injury could be well tolerated (6). Delayed splenic rupture is almost unknown in children, and because of its position the spleen is often the only visceral organ damaged by trauma in children. It is for these reasons that paediatric surgeons became the first to adopt a more conservative approach to splenic injury (7). In the USA it
The conservative approach may be extended to the pathological spleen (18), as our experience with a patient with infective mononucleosis demonstrates. Patients with haemophiliacs and splenic injury may be treated non-operatively (19). Slowed coagulation is not a bar to conservative treatment; two of our patients who were taking warfarin were safely managed non-operatively. However a combination of beta blockade and anti coagulation was deemed to be best managed by splenectomy.

An argument against conservative management of splenic injury is the perceived risk of increased likelihood of blood transfusion and its attendant long term sequelae. Patients who come to require surgery after a period of expectant treatment on average receive double the number of units of blood as those who underwent primary surgical treatment (20). This concern has not been born out by our series; those undergoing surgery on average received six times as many units of blood as those treated non surgically. In the non-operative group 44% of patients received no transfusion at all. This probably reflects differences in the nature of the injuries between the two groups, those requiring surgery having more extensive injuries to begin with. In any case patients who undergo any form of surgery will develop complications and require more blood transfusion than those treated non surgically (21).

Repair of the injured spleen is a technique with considerable success in experienced hands (22). We were able to apply salvage in only one of our patients. An alternative to splenorrhaphy is sub total splenectomy preserving the upper pole vascularis only by the short gastric vessels (23) (Fig 2). A human fibrin seal has been used experimentally in rabbits (24). Absorbable mesh repair has been described to help achieve a splenic salvage rate of 67% (25). Laparoscopy has been used as both a diagnostic and therapeutic tool, and can be used to apply a fibrin glue (26).

The role of autotransplantation of splenic tissues has been questioned (27). The lack of success may be due to the absence of the type of blood supply that the normal spleen receives, which may be important in clearing pathogenic organisms. A high proportion of transplanted, 17.5% will undergo aseptic necrosis and even small bowel obstruction has been reported (28).

The results of our study conform with the previous findings that on isolated splenic injury may be treated non surgically, with close clinical and radiological monitoring. This approach is safe in patients with isolated splenic injury, sustained by low velocity, low energy accidents. Patients who have not been involved in road traffic accidents (29), and who become haemodynamically stable after initial fluid resuscitation, whose symptoms progressively improve after the injury are most likely to benefit from this approach. Patients who need to undergo prolonged anaesthesia for treatment of extra abdominal injuries or whose level of consciousness needs monitoring are unsuited to this approach (30).

REFERENCES
5. EVANS D. Fatal postsplenectomy sepsis despite prophylaxis