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ABSTRACT
Extremity ballistic injury is unique and the literature
intended to guide its management is commonly misinter-
preted. In order to care for those injured in conflict and
conduct appropriate research, clinicians must be able to
identify key in vivo studies, understand their weaknesses
and desist the propagation of miscited and misunder-
stood ballistic dogma. This review provides the only
inclusive critical overview of key studies of relevance to
military extremity injury. In addition, the non-ballistic
studies of limb injury, stabilisation and contamination
that will form the basis from which future small animal
extremity studies are constructed are presented. With an
awareness of the legacy of military wound models and
an insight into available generic models of extremity
injury and contamination, research teams are well placed
to optimise future military extremity injury management.

INTRODUCTION
Combat wounding is characterised by disabling
extremity injury, and 70% of war wounds involve
the limbs.1 2 Mechanism is key: short duration,
high-energy transfer explosions with fragmentation
cause 75% of extremity war wounds3 and infec-
tion, a source of significant morbidity in survivors
of combat,4–7 is associated with these injuries.
While the Lower Extremity Assessment Project, a

multicentre prospective outcome study of signifi-
cant limb injury, reports outcomes for limb salvage
and amputation,8 it is an observational civilian
study uncontrolled for initial injury management.
Overall, ballistic trauma is notable for the absence
of its clinical evidence base. Inability to control and
stratify injuries, treatment or follow-up compro-
mises study methods supporting the need for in
vivo experimentation to further the understanding
of war wounding.
This review provides the only critique of key

models in the study of combat relevant extremity
injury; it highlights inadequacies in existing animal
studies that limit their application to combat extrem-
ity injury and will guide future model design.

METHOD
Combat wounding is rarely isolated to a single
tissue and compound injury of bone and soft
tissues predominates. Similarly, seldom are such
wounds free of debris or organisms. In order to
represent this and present the findings of this
review in a structured fashion, in vivo models are
categorised according to animal type and then dis-
cussed further with regard to fracture, soft tissue
injury and infection.
An electronic search of the Medline database

using the PubMed search engine limited to

manuscripts published in English until July 2012
was performed. Medical Subject Headings of
Wounds, Penetrating, Forensic Ballistics, Models,
Animal, Fractures, Bone and Extremities and
Boolean operators, were used to construct a search
strategy9 and although the nature of the studies
reviewed preclude systematic review or
meta-analysis, the outcome of retrieved abstracts is
presented (Figure 1). Retrieved abstracts were ana-
lysed for relevance and full text papers obtained.
Articles initially missed in this search were obtained
from manual searching of the bibliography of
retrieved studies.
In order to ensure only articles relevant to the

representation and investigation of ballistic extrem-
ity trauma were reviewed, a considerable number
were excluded from further analysis according to
the exclusion criteria in Box 1.

PORCINE MODELS OF BALLISTIC INJURY
The animal of choice for physiological resuscitation
studies,10 porcine models, are used to investigate
management options in the blast injured casualty.11–21

To study gunshot wounding (GSW), however, ana-
tomical projectile interaction with tissues is key in the
choice of model. Again, swine are historically the
most popular choice due to similarity in tissue archi-
tecture and scale to the human. The impact of muzzle
velocity, the stimulus for much porcine modelling to
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Key messages

▸ Extremity ballistic injury is unique and demands
individual care, based on clinical and in vivo
research.

▸ Ballistic injury literature is often misinterpreted:
a situation which propagates an often
dogmatic approach to war surgery.

▸ Large animal models of simple projectile injury
must be placed in context with and contrasted
to modern combat injury patterns.

▸ Civilian small animal models of injury and
infection have application to military injury
modeling although are limited in their
exploitation of contaminated soft tissue injury.

▸ A need exists to further develop military
specific, contaminated soft tissue small animal
soft tissue models.

▸ With an awareness of both large and small
animal ballistic and extremity trauma models,
military surgeons are in a better position to
accurately interpret pertinent literature and
optimize patient care.
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follow, was highlighted in a series of clinical papers by
DeMuth,22–26 attesting that ‘velocity makes the difference’23 in
GSW and that ‘killing power is determined by the velocity at
impact’22 based on changes in wounding patterns from the
Vietnam War following the issue of a new rifle to the US
troops.27 28 The 7.62 mm round fired from the M14 rifle was
replaced by the lighter, smaller and faster 5.56 mm ammunition for
the M16. Increased muzzle velocity was presumed to result in
greater tissue trauma although it has, in many wounds, the opposite
effect. In wounds with short tracts, the smaller, faster bullets were
likely to pass through tissue intact. Only in those cases where the
bullet was retarded or had significant tract length were devastating
injuries seen29 although investigators of the post-Vietnam era,
however, made muzzle velocity central to their in vivo porcine
wounding hypotheses.

Velocity as a variable in wounding is not new, as demonstrated
by Kocher’s theory30 of hydrodynamic projectile–tissue inter-
action: the pressure wave created when a projectile contacts a
medium of different density.31 This underlies many animal
models of GSW, including the Swedish Missile Trauma model
(SMTM),32 a series of experiments on the legs of Swedish

Landrace pigs. In earlier versions,33 standard weaponry are used
although later, smooth spheres fired into the pigs legs34 35 were
correlated with simulant media on a hypothesis that it is solely
the conversion of deposited kinetic energy which has potential
and therefore may be responsible for tissue damage. This phil-
osophy, concentrating only on energy deposition generated
through muzzle velocity, disregards the effects of the projectile
physically passing through and damaging soft tissue and bone.

This SMTM method is used to investigate local mechan-
ical33 36 and metabolic37–41 effects of projectiles, the influence
of trajectory length,42 timing and extent of debridement34 and
the influence of antibiotics.35

The SMTM has limitations, which have come to signify the
divide in the scientific community over the concepts of muzzle vel-
ocity and energy transfer and the impact of both on wounding.
First, little attention is paid in the SMTM to fragmentation and its
effect on tissues. Berlin et al33 report that damaged bullets resulted
in ‘complicated’ or high severity wounds regardless of initial vel-
ocity. Despite this, the authors hypothesise that it is actually the
impact of projectile velocity that influences the amount of non-
viable tissue. Second, the use of simulant media further threatens
their findings. A non-elastic (gelatin) tissue stimulant is used render-
ing it impossible to distinguish a temporary cavity (of lesser injuri-
ous extent) from the crushing tissue loss of the permanent cavity.
The blocks are not calibrated following preparation and thus any
variance introduced through non-standardised heating of the
gelatin will affect the results, further preventing generalisation of
kinetic energy transfer results to live tissue.43

Further limitations include the use of steel spheres which do
not yaw, nutate or fragment and hence the non-reproducible,
non-uniform impact surface and the ‘secondary projectile’ effect
is neglected. Animals in which projectiles hit bone were
excluded from analysis,34 41 despite the relationship among

Figure 1 Flowchart of article identification.

Box 1 Exclusion criteria for further analysis of retrieved
abstracts

▸ Non-extremity military ballistic injury articles
▸ Exclusively in vitro studies
▸ Clinical studies of extremity injury management
▸ In vivo models of simple skin wounding and healing
▸ Non-extremity in vivo models
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fragmentation, fracture and wound severity identified at the
outset of the model.33 These studies therefore have limited simi-
larity to current ballistic injury patterns. Following criticism of
the SMTM, the characterisation of wounds by muzzle vel-
ocity44 45 and the practice of basing debridement on energy
transfer came into question as investigators brought into consid-
eration the effect of bullets and other projectiles physically inter-
acting with tissues.46

Fackler and his colleagues reported a series of combined in
vivo and tissue substitute studies investigating standard muni-
tions in porcine models. In contrast to the SMTM, the models
of Fackler et al47–49 are focused on the effect of bullet deform-
ation on the wound profile. Using a porcine model they demon-
strated that the wounding profile was strongly correlated to the
design and behaviour of the projectile within tissue, related to
its trajectory,49 50 the elasticity of the organs in its proximity47

and ultimately to its fragmentation.51 52 Assessment of the tract
through tissue and gelatin blocks revealed that disruption from
fragmenting bullets is significant and that fascial decompression
often occurs at wounding. In the presence of antibiotic cover,
wound excision did not improve time to healing in simple,
short tract wounds.53

In contrast to guiding debridement by kinetic energy,33

Fackler et al proposed that projectile fragmentation should
guide tissue excision, a hypothesis corroborated by Tikka
et al.54 In contrast to other Scandinavian studies, Tikka’s group
used standard weaponry and of the munitions fired, the
5.56 mm round underwent greater fragmentation, was asso-
ciated with greater energy transfer and necessitated the resection
of up to twice as much tissue than the larger calibre projectiles.
This was achieved by a bullet of less than half the mass (3.6 g)
of the two greater calibre rounds (8 g). The lower mass of the
5.56 mm round contributed to its initial impact energy being
20% less than the M62 or AK47 ammunition, although its
transferred energy was 276% greater. The key finding of these
models, therefore, in contrast to the SMTM, is that the influ-
ence of bullet mass and velocity is of little consequence in com-
parison to the terminal behaviour of the round.

While Fackler et al present evidence more generalisable to the
clinical setting than that of the SMTM, the use of smooth pro-
jectiles and ‘simple’ low energy transfer wound models should
not be discounted. Although acknowledged to be less represen-
tative of compound tissue trauma, they do have relevance to
injury by multiple small fragments. In the models of both
Bowyer et al55 and Mellor et al,56 uniform projectiles are used
in a low-energy transfer wounding, avoiding bone and vessels,
producing short projectile tracts. These wounds are then used to
assess the impact of antibiotic administration, demonstrating
that for the selected wound profile, surgical intervention is less
likely to be required.57–59

More recently, porcine modelling has moved towards examin-
ing the effects of injury distant to the projectile. As with other
areas of ballistics, misunderstanding of shock waves leads to
confusion. The shock wave is sonic pressure that results from
the bullet striking tissue. Travelling at the speed of sound (ie,
faster than the speed of the bullet), it passes through tissue
ahead of the projectile. Cavitation is a separate entity caused by
the bullet physically striking tissue and occurs in its wake.31

Suneson et al demonstrated in vivo and in vitro shock wave
injury thus highlighting local, regional and distant injuries
resulting from sonic pressure waves. Stigmata of microscopic
damage to central and peripheral nerves occurred at a distance
and was therefore not attributable to the effects of either the
permanent or temporary cavities of the projectile.60 61

Attribution of tissue damage to the sonic wave as opposed to
the effects of temporary cavitation has attracted considerable
debate. Fackler and Peters are vociferous in their critique and
both in correspondence with Suneson et al62 and in a later pub-
lished review dismiss injury due to the effects of the sonic wave
as myth.63 The arguments used against acceptance of injury by
the sonic wave are suspect. Fackler cites comparison with a previ-
ously reported animal model53 as proof that distant injury does
not occur but the methodology of the two experiments however
is disparate and it is impossible to generalise from the work of
Fackler et al53 to that of Suneson et al60 61 who make the point
that distant injury occurred only at a microscopic level.

Fackler et al53 state that in one of their studies ‘an area of the
thigh with the gunshot wound was sectioned for histological
study’. This was in essence a study of local (thigh) tissue effects
in which no evidence of distant injury was sought. It is difficult
therefore to accept this as experimental proof that the work of
Suneson et al is flawed. Similarly, Fackler and Peters cite the
absence of distant injury seen in the Vietnam conflict. Using
data from 1400 GSWs they remark that ‘there were no cases of
bones being broken, or major vessels torn, that were not hit by
the penetrating bullet.’62 Again, comparing such macroscopic,
local wound evaluation to a controlled animal experiment per-
formed at a distant microscopic level is questionable. In add-
ition, subsequent interrogation of the Vietnam data64 reveals
Fackler’s interpretation to be biased as ‘the database contains at
least one possible example of this phenomenon’64 referring to
the influence of pressure waves on nerve tissue injury.

Thus, it can be seen that far from refuting the possibility of
distant injury occurring secondary to GSW, these data suggest
that such a mechanism may exist. While often contradictory, a
large body of experimental evidence exists for the interaction
among projectiles, tissue or its substitute.

In addition, increasing evidence exists for trauma distant to
the projectile in extremity models not attributable to cavitation
phenomena. This is of particular relevance in combat injuries
seen as a result of explosion.

NON-PORCINE MODELS OF GSW
The damaging potential of high-velocity bullets was assumed, as
with the SMTM, to be so great that they exploded on contact
with tissues65 and the teaching that widespread debridement
should be carried out for high-velocity gunshot wounds
resulted. Often incorrectly cited, this erroneous dogma should
actually be attributed to Rybeck66 who proposed that high-
velocity GSWs resulted in a temporary cavitation effect 30 times
the diameter of the bullet entering the tissue, but more import-
antly that tissue within this zone would not survive. He used a
canine model in which a smooth spherical projectile was shot
through the medial hind leg of dogs and concluded that:

…the temporary cavity following the high velocity missile
appeared to affect the tissue as markedly as the contusion trauma.
These findings can explain the clinical experience that tissues
which have been subjected to the formation of the temporary
cavity after a high velocity missile will not survive.

This is the paragraph of text which erroneously has most
influenced the management of wounding by gunshot with such
a debridement equating to the removal of a mass of tissue some
23 cm in diameter for all presumed high-velocity wounds.63

The concept that huge debridement is mandatory sprang from
this canine model and continues to influence surgical doctrine.
Of note, Rybeck’s is a non-recovery model so that none of the
dogs were allowed to recover from injury to provide clinical
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evidence to support the histological analysis that temporary
cavitation led to such marked tissue destruction.

Contrary to the method of Rybeck,66 evidence can be found
for lack of significant tissue loss and apparent healing from
high-velocity wounding in non-porcine recovery models. In an
ovine GSW model, Hopkinson and Watts67 found that damage
to the tissues was confined to a small area around the projectile
path. No surgery was performed and the animals recovered and
ceased limping by the fourth day. The authors concluded that ‘it
would appear from the results presented here that the less
severe wounds of skeletal muscle, particularly if there is no
damage to major blood vessels, might heal spontaneously.’ This
finding that simple GSW, regardless of muzzle velocity, follow
an uncomplicated path to healing is corroborated elsewhere in a
caprine model68 and also in a development69–71 of the ovine
model of Hopkinson and Watts.67

Of note, however, is that these studies69–71 then go on to
introduce the deliberate infection of such simple wounds. In
contrast to the recovery of the health of animals without surgi-
cal intervention or antibiotics, in animals with wounds compli-
cated by gas gangrene, no untreated animals survived and
surgery had no impact on outcome. The administration of intra-
muscular penicillin, however, prevented gangrene and was more
effective than either wound incision or excision.

Irrefutable evidence of recovery from simple high-velocity
GSW in animal models thus exists and it is latterly acknowl-
edged that the requirement for widespread tissue excision is a
myth.72 73 It is concerning therefore that permanent tissue
damage 30 times the size of the projectile and radical debride-
ment remains quoted in established literature.74–77

Debridement based solely on muzzle velocity is flawed, but it
is important to note the lack of contamination in the majority
of studies and the clinician must balance excision of tissue due
to projectile passage with that required to reduce the burden of
contaminating organisms. It is the combination of these pro-
cesses that guide debridement, not purely the speed at which
the bullet travels prior to injury.

NON-PROJECTILE LARGE ANIMAL EXTREMITY INJURY
MODELS
The porcine models involve injury to the extremity through
passage of a projectile. Other militarily relevant large animal
models have investigated extremity trauma in the absence of pro-
jectile injury. External fixator pin contamination and the impact
on subsequent intramedullary nailing are the subject of a series of
experiments by Clasper et al78–80 in an ovine model of importance
due to the preponderance of temporising external fixation fol-
lowed by late definitive stabilisation in this population. In a study
of pin sites contaminated with Staphylococcus aureus, all tracts
became infected in addition to all of the contiguously sited but
uncontaminated control pins. This model was subsequently used
to demonstrate the role in infection of fluid accumulation at the
pin–bone interface80 and intramedullary nailing in the presence of
infected external fixator pin tracks.79 Lack of fracture in the model
of Clasper et al80 was addressed in a modification by Hill and col-
leagues demonstrating the morbidity associated with early intrame-
dullary nailing of heavily contaminated tibial fractures despite
debridement and antibiotic use.81

Osteomyelitis is also addressed in caprine models and the
goat is chosen by Curtis et al82 for their recovery study of open,
S aureus contaminated, tibial fracture management. The results
of this work corroborate those from the ovine models of both
Clasper’s and Hill’s groups with regard to infection risk in early
intramedullary nailing of open fractures and also illustrate the

benefits of increasing animal size in extremity trauma research.
Standard surgical approaches and implants are used with only
slight modifications.

The limitation of this study is its short time period with the
inability to draw conclusions regarding long-term outcome of
the different fixation strategies, especially in terms of clinically
apparent infection or the impact this may have on fracture
union.

Further exploring treatment modalities for open fractures,
Svoboda et al83 created a militarily relevant bioluminescent
musculoskeletal wound model to perform a comparison of bulb
syringe and pulsed lavage irrigation. This model represented a
true experimental compound extremity injury and is the basis
for a number of further studies using Pseudomonas species and
S aureus84–88 including the experimental evaluation of topical
negative pressure wound therapy augmented with silver
dressings.89 90

While allowing for experimental manipulation of variables
affecting early operative interventions in limb trauma, these
studies are all of short duration and it would be beneficial to
extend the study period to assess longer term outcomes, particu-
larly with regard to the establishment of chronic osteomyelitis
or the effect of model manipulation on fracture union.

Where the caprine studies benefit most compared to small
animal models as highlighted by Salgado et al91 and Curtis
et al82 is their comparative size in terms of osteology and ability
to use standard osteosynthesis techniques and instruments. This
comparison is not limited to internal fixation and a number of
studies have used goats as experimental models for the study of
external fixation.92–96

Internal and external fixation for fracture management,
debridement and wound care and wound profiling have there-
fore all been investigated in vivo in large animals. Emphasis on
muzzle velocity and the implication of energy transfer and
debridement on this premise are highlighted in early porcine
models alongside more compelling evidence of injury far distant
to the projectile’s path. Infection as a key component in extrem-
ity wounding is similarly noted.

An awareness of these studies and an understanding of those
that have erroneously influenced modern wound care is essential
to military surgeons and in particular those designing contem-
porary experimental models of extremity wounding.

SMALL ANIMAL MODELS OF RELEVANCE TO MILITARY
EXTREMITY INJURY
Large animals have advantages in terms of similarity of physi-
ology, surgical approach, bone structure and ease of implant
instrumentation over smaller animals. Inherent in the use of
such larger animals are significant husbandry and welfare issues
associated with using more sentient animals for scientific
research. Researchers are beholden to use as few animals, of
least sentience, as possible in a responsible manner in accord-
ance with the principles of replacement, refinement and reduc-
tion.97 98 Whereas complete replacement of experimental
models with non-animal alternatives may not be plausible, the
use of smaller animals of least sentience must be the aim.

Traditionally, models of fracture healing and instrumentation
involved large animals and, in particular, the sheep tibia.99–101

The advent of gene targeting and significant advances in the
evolution of osteosynthesis implants for small animals however
has occasioned a move away from large animal models towards
lesser sentient, easier housed, genetically manipulated rodents
and rabbits.
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Murine models of extremity injury and infection
Examples of fracture initiation, stabilisation and healing are
available in isolation in rats and mice.102–125 Muscle trauma in
murine models is less well investigated and where performed is
dominated by closed injury126–137 with limited relevance to
military extremity trauma. While a minority of controlled,
reproducible open muscle injury models are reported,138 139 the
majority of methods use uncontrolled manual application of
crushing forceps140–145 to the muscle belly with considerable
variability. Infection modelling in the murine extremity models
is also limited in scope, detailing primarily osseous critical
defect or implant related infection in the rat.146–163 Similarly,
soft tissue contamination models are limited.164 165

Guinea pig models of extremity injury and infection
The guinea pig is notably the animal used by Koch to establish
the causative link between organism and disease.166 167 In add-
ition, susceptibility to pyogenic staphylococcal infection168

makes it of relevance to extremity studies both of wounding
and prosthesis infection. Although the guinea pig demonstrates
advantages of increased size over murine species while sharing
their benefits in terms of economy of husbandry, there are draw-
backs to their use. They are more expensive and do not offer
the same potential for gene deletion technology as is available
in the mouse.

In addition, as with the murine models, options for osteo-
synthesis and fracture modelling are less well established and
impart considerable technical and logistic demands on the
researcher. Unlike the murine models, fracture studies are
limited with only one contemporary biomechanical study of
fracture healing with rudimentary intramedullary stabilisa-
tion.169 Similarly, the animal is not routinely used to investigate
osteomyelitis, with only one experimental assessment of a con-
taminated, open fracture.170

Although fracture and osteomyelitis models are limited in the
animal, the experimental investigation of soft tissue infection
and wounding is well established in guinea pigs. As the land-
mark study of Koch influenced the approach to disease caus-
ation, similarly the guinea pig contaminated wound model of
Friedrich has had significant impact on the approach to extrem-
ity wounding and is the historical basis for an emergent
approach to open fracture management.171

While numerous such guinea pig models of wounding and
infection exist, they are not representative of contaminated
extremity injury. Models involving incisional or lacerated
wounds created on the flanks or paraspinal region of the animal
with or without additional uncontrolled muscle crush through
application of artery forceps characterise these studies.168–180

Reproducible, controlled tissue trauma does not feature in
these models and none involve the limbs.

Rabbit models of extremity injury and infection
Benefiting from increased osseous dimensions while maintaining
the relative ease of husbandry, the rabbit is an established animal
model for fracture healing and orthopaedic implant investiga-
tion. Compared with the rat or mouse, however, soft tissue
trauma is less well modelled in this animal.

The rabbit tibia has been extensively modelled in both open
and closed fracture initiation.181–187 Stabilisation of fractures
has also been reported using relative stability fixation and more
advanced osteosynthesis. Early, rotationally unstable Kirschner
wire intramedullary fracture fixation188–190 has been surpassed
by rotationally stable interlocked nails.191 The dynamic

compression plate, synonymous with fracture osteosynthesis, has
also been modelled on the rabbit and of note is reported in an
early study documenting primary bone healing in rabbit
tibiae.185 This study of Rahn et al is significant in demonstrating
the process of haversian remodelling in rabbit fracture healing
similar to that in adult human bone. This contrasts the rabbit as
a bone healing model to the available murine models, which
demonstrate limited similarity to adult primary bone healing.

Infection of rabbit bone has been modelled more extensively
than any other. It is also notable for rudimentary investigation
of wound infection in the Vietnam conflict and is thus explored
in greater detail. Simple osteomyelitis models were first devel-
oped in the rabbit although they were characterised by failure to
produce progressive disease and, in addition, were associated
with significant mortality.192–194 Norden and Kennedy195 iden-
tified the lack of long term osteomyelitis models in their modifi-
cation of the work of Scheman et al.192 Percutaneously
administering sclerosant and S aureus into the proximal tibial
metaphysis of New Zealand white rabbits, they introduced the
‘gold standard’ model of reproducible osteomyelitis capable of
experimental manipulation for up to 6 months. Thus established
as a standard for the study of bone infection, the model of
Norden and Kennedy is used or modified by others.196–205

Careful interrogation of studies citing Norden and Kennedy
reveal that a number incorrectly interpret the fundamental
aspects of the design and thus caution must be adopted in the
interpretation of their results.189–207 In an additional example
of how miscitations are propogated through scientific literature,
Moriarty et al208 incorrectly identify their methodology as that
of Norden and Kennedy due in part to the earlier miscitation of
Melcher et al. It is imperative that designers of future rabbit
bone infection models are cognisant of these errors in citations
in order to allow for successful comparison of experimental
findings.

Andriole et al183 209 developed the work of Norden and
Kennedy by extending the study period and incorporating the
use of intramedullary nails in the study arms thus using the
foreign body effect and enhancing its clinical applicability. Of
note, the investigators found that in control animals exposed to
inoculation with S aureus only, no osteomyelitis developed. In
contrast, both groups of animals with either fracture or intrame-
dullary nail or nailing alone developed osteomyelitis with the
same dose as the controls. In addition, a second study209

demonstrated that the dose required to produce osteomyelitis in
the intervention groups was 100 times less than that required in
controls. The value of these studies is the length of the clinical
course and the demonstration of the impact of intramedullary
devices on osteomyelitis. Of note, no sclerosant is used and the
fractures are produced by a three-point bending clamp in a
closed fashion. Both the work of Norden and Kennedy and
Andriole et al thus advanced the animal modelling of osteomye-
litis and informed the methodology of subsequent studies. Both
designs however have inherent limitations in application to
osteomyelitis research due to the absence of soft tissue trauma,
which is a key feature and prognostic indicator with significant
limb injury.

A study that at first seems to address these limitations is that
of Friedrich and Klaue.182 Assessing the impact of fixation rigid-
ity on the incidence of osteomyelitis following open fracture,
Friedrich and Klaue used compression plates and intramedullary
nails to stabilise contaminated fractures. Their results indicate
that contaminated fractures stabilised rigidly demonstrate a clin-
ical path similar to that of non-contaminated fractures similarly
fixed and that contaminated fractures fixed with relative stability
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have a greater risk of developing osteomyelitis. Their study
design however is poor and allocation to groups and detail of
end points are lacking, leading to the questioning of the validity
of their findings, despite their apparent clinical application.

The concerns over the lack of applicability to open fractures
of the models of Norden and Kennedy195 and Andriole et
al183 209 are highlighted by Worlock et al188 in the introduction
to their model of post-traumatic osteomyelitis where the use of
sclerosant and percutaneous inoculum with no soft tissue
trauma and fracture is likened more to a model of haematogen-
ous osteomyelitis than that of traumatic origin. While the model
of Andriole et al does incorporate fixation and fracture in its
design, soft tissue trauma does not feature and the inoculation
point is distant to the site of fracture.

Using the fracture model of Ashhurst’s group,186 Worlock
et al188 performed an open fracture followed by intramedullary
nailing of the tibia. In addition to the use of an open fracture by
osteotomy, this study advanced the modelling of open fracture
by inoculating the fracture site directly, a direct contrast to pre-
vious work. They conclude that their model uses animals which
are relatively cheap and easily available and the instrumentation
required is easily adapted from standard surgical practice. In
addition, they were able to reproducibly induce osteomyelitis
with no systemic side effects and in contrast to many previous
studies, all animals survived. This model benefits from its ability
to more closely replicate bacterial contamination at a fracture
site and it forms the basis for a number of subsequent studies of
therapeutic manipulation of fixation devices for potentially
infected fractures210–212 and also for studies in which no frac-
ture occurs but direct device infection is enabled by the tech-
nique described.213–215 In addition, Worlock et al216 used their
model to assess the impact of antibiotics on subsequent infection
in open fractures and also carried out a key study relating the
stability of fracture fixation to ultimate complication by infec-
tion—essentially a more robust investigation than that per-
formed earlier by Friedrich and Klaue182 but yielding similar
findings of decreased post-traumatic osteomyelitis in contami-
nated fractures that are rigidly stabilised.

Further to the establishment of post-traumatic osteomyelitis
as detailed by Worlock et al,188 the impact of implants, bone
cement and bone wax in osteomyelitis models is also addressed
in the rabbit.217–229 Current researchers planning study designs
should be aware that as with Norden and Kennedy, the model
of Nijhof ’s group has also been incorrectly cited by Jia et al230

in their study of the prophylactic effects of platelet–leucocyte
gel in osteomyelitis by omitting cement from their method,
obviously an inaccurate model citation.

In contrast to murine modelling, the investigation of soft
tissue trauma in rabbits is sparse. There are no controlled
models of open muscle trauma in the rabbit and only one closed
study is reported. Zhang et al231 used MRI to quantify muscle
damage following closed crush injury in New Zealand white
rabbits. Their description of injury mechanism is limited,
however: ‘Then, their right hind limbs were fixed with wooden
splints and crushed with 25 kg heavy weight’.231 The only series
describing experimental open muscle trauma in the rabbit are
military studies from the Vietnam War period. Rutherford
et al232 describe the use of a compound soft tissue injury of the
buttock region of rabbits in establishing a model of experimen-
tal clostridial wounds. Following excision of a full thickness skin
flap, non-standardised lacerations were created in the gluteal
musculature, down to bone and the incised muscle strips then
crushed sequentially with artery forceps. The wounds were then
contaminated by soil sourced from the under surface of a motor

car. These uncontrolled experiments resulted in significant mor-
tality both through extensive debridement, including disarticula-
tion at the hip, and also from the effects of gas gangrene. Of
note from these experiments however is the effect of early
debridement in decreasing mortality and, of particular interest,
the increased mortality associated with late, as opposed to
simply delayed, debridement. In addition, the administration of
topical antibiotics was shown to extend the window in which
debridement may influence mortality.

The rudimentary model used by Rutherford et al232 was sub-
sequently chosen by Matsumoto et al233 to study the effect of
various soil contaminants and the impact of topical antibiotics.
In a geographical study, Matsumoto et al233 collected soil
samples from swamplands, fertilised farmlands and more arid
beach areas around Vietnam during the conflict. The rabbits
were prepared as in the model of Rutherford et al and a sample
of soil applied to the wound. While the methodology is poor
and outcomes unclear, the difference in mortality of the rabbits
is marked. Reflecting experience from current conflicts234 and
that seen in the original description of war wound bacterio-
logical profiles,235 the nature of soil influences the bacterial
burden of the war wound with wounds occurring in jungle,
swamp and fertile farmland associated with greater morbidity
than those from more arid climates.

Having established the model of soil samples from conflict
zones, Matsumoto et al236–240 went on to investigate the appli-
cation of topical and systemic antibiotics to these wounds in a
series of subsequent studies. Refining the methodology slightly,
they introduced soil samples and also a known quantity of poly-
microbial bacterial suspension to the wounds. Of interest, in
these studies guinea pigs were also used for the model; however,
no justification for this is made. While suffering from consider-
able inadequacies in method and animal welfare, these papers
demonstrate the proposed benefit of early application of topical
antibiotic to combat wounds, which is in contrast to clinical
observation from World War II.241 The model allowed early
experimental contamination with one or more organisms asso-
ciated with conflict wounds and while its methodological flaws
limit its use for modern extremity trauma research, it has value
as a basis from which to design animal models of standardised
injury and contamination.

SUMMARY
The conflicts in Iraq and Afghanistan have refocused attention
on combat casualty care and in particular the impact of far-
forward resuscitation, prompt evacuation, haemorrhage control
and time limited surgery on patient outcome.

Despite these improvements, a burden of significant extremity
trauma remains in those surviving combat injury. This patient
cohort is a result, in part, of increasing survival but is also due
to the nature of current combat wounding. Injury by gunshot
has been eclipsed by explosive devices with its late extremity
complications of skin coverage, fracture stabilisation and infec-
tion and there remains a need to optimise through animal mod-
elling the management of these disabling injuries. Simple, soft
tissue wounding based on velocity and studies of smooth pro-
jectile passage through muscle and gelatin have limited relevance
to modern conflict wounding patterns.

The concept of tissue injury, albeit at a microscopic level,
distant to the passage of a projectile raised in swine models fol-
lowing the Vietnam conflict remains unanswered. This is par-
ticularly of relevance to the nerve injuries seen from recent
conflict and further in vivo work would be of value to investi-
gate this phenomenon.
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Non-porcine large animal GSW studies also have flaws in
their design that have influenced current military surgical doc-
trine, particularly notable in terms of erroneous recommenda-
tions for debridement extent. Such flaws limit the ability to
generalise many of the most cited models to contemporary con-
flict injury. Models of short duration, high-energy, non-
projectile, contaminated extremity injury most representative of
current wounding are not seen in large animals.

This lack of complex, contaminated wound models in com-
bination with adherence to the principles of replacement, refine-
ment and reduction has led to the use of small animals such as
rats and mice to construct future models of complex military
extremity injury. Although murine models are widely used in
musculoskeletal research, this review has highlighted limitations
in available murine models applicable to military complex
extremity trauma.

Murine bone morphology and remodelling raise concerns
regarding generalisation to clinical practice both in terms of
bone healing and regarding methods of osteosynthesis.
Controlled models investigating isolated aspects of fracture initi-
ation, healing and management of contaminated bony defects
are available in rats and mice. Studies of compound bone and
soft tissue trauma are, by contrast, sparse and where reported
are characterised by uncontrolled muscle crushing injury.
Controlled soft tissue damage and contamination have not been
carried out in rats or mice. The murine models therefore are
limited by scale and, to date, fail to generate a model of suffi-
cient compound injury or contamination to have military
relevance.

In contrast to the murine models, there is limited evidence
for suitability of the guinea pig in the investigation of fracture
initiation or management. In addition, while associated with
experiments that link bacterial contamination to infection and
subsequently influenced the rationale for open fracture manage-
ment, these are characterised by a lack of control of wounding.
Also, the majority of guinea pig studies use the paraspinal mus-
culature in their models, not the extremity, and so generalisation
of tissue contamination and healing from these models to
modern complex extremity injuries is threatened.

The largest of the small animal models used for the investiga-
tion of fracture initiation, healing, contamination and osteomye-
litis is the rabbit. As with the murine and guinea pig models,
rabbit musculoskeletal experimentation is widespread and the
New Zealand white rabbits in particular are accepted through-
out healthcare research as a disease and injury model. In com-
parison to the murine and guinea pig models, the rabbit benefits
from increased size and, in particular, more clinically relevant
bone healing and ease of osteosynthesis. Rabbit fracture models
of the tibia, radius and ulna are abundant and contamination to
produce infection either as a percutaneously introduced haema-
togenous model or one reflective of post-traumatic osteomyelitis
is available. These models all use S aureus which is the predom-
inant organism associated with late battlefield wound infection
sequelae.

Initial fracture fixation options in the rabbit were rudimentary
but currently interlocked intramedullary nails, dynamic com-
pression plates and external fixators are available for fracture
stabilisation, although the performance of these devices in the
presence of contamination is not reported. In addition, where
rabbit models are lacking is in the controlled delivery of a high-
energy, short duration muscle injury and its subsequent
contamination.

Extremity ballistic injury is unique and the literature intended
to guide its management is commonly misinterpreted. In order

to care for those injured in conflict, allow debate and the design
of preclinical studies, clinicians must be able to identify key in
vivo studies, understand their weaknesses and resist the propa-
gation of miscited and misunderstood ballistic dogma.

In order to thus inform military clinicians, we have provided
the only inclusive critical overview of key studies of relevance to
military extremity injury. In addition, the non-ballistic studies of
limb injury, stabilisation and contamination that will form the
basis from which future small animal extremity studies are con-
structed are presented. With an awareness of the legacy of mili-
tary wound models and an insight into available generic models
of extremity injury and contamination, research teams are well
placed to optimise future military extremity injury management.
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