profusion of the rash there was nothing in this case to suggest any unusual features. The condition of the heart, which showed epicardial petechial haemorrhages, is worthy of note, and in this connexion a death occurring in Guy's Hospital and quoted in the British Medical Journal of May 2, 1914, is of interest. Here in addition to bleeding in other organs, petechial haemorrhages beneath the pericardium were present.

---

A NEW PATTERN STRETCHER.

By Lieutenant C. HAMILTON WITHERS.
Royal Army Medical Corps (T.).

The new pattern stretcher (figs. 1 and 2), particulars of which are given below, has been designed for use more particularly in those cases where the patient is liable to experience, in transit down line of communication, considerable pain or discomfort when of necessity he is repeatedly lifted on and off the regulation stretcher, which, owing to its length, etc., may not be placed directly into (or, in the majority of cases, even on) the cot in hospital or on shipboard. It is also pointed out that the width in the case of this new stretcher may be reduced from the standard to a given minimum without unloading, which greatly facilitates the transport of the patient through passages, railway carriage doors, and confined spaces generally. Fig. 1 illustrates the "traverses" locked at the reduced width by the use of pins, which are attached to the bars by means of chains.

The stretcher, as will be observed from the illustrations, consists of two parts, i.e.: (a) the frame complete; (b) the loose canvas bed. The total weight of the stretcher complete, with its special metal fitments, reinforcing plates, etc., is approximately 21 lb. only.

The frame is so constructed that the handles can be pushed home (fig. 2), giving a total overall length not exceeding five feet nine inches, which length at a trial on a hospital ship recently proved amply sufficient for a man six feet two inches in height. The special metal feet also, with the utmost ease, collapse on release from the trigger and fold up flush against the poles—thus enabling the frame with the traverses eased to be placed directly over the patient, who it is assumed is resting upon the loose canvas bed mentioned above. This canvas "bottom" (which has been placed under the patient in the same manner as a sheet) is now readily fastened to the frame by means of the eyelets and spring hasps illustrated—see figs. 3 and 5—and the traverses having been pressed home the patient is ready for removal.

The "bottom" or bed was originally made of the Army regulation canvas, but it has since been found more satisfactory to employ a somewhat smoother material. In any case the canvas "bottom" is strengthened by the use of web bands which extend beyond the bed and serve as hand grips (see fig. 2).
A NEW PATTERN STRETCHER.

Stretcher with portable Canvas Bottom, arranged to reduce in width if desired for passing in Narrow Doorways. Scale 3⁄8 inch = 1 foot.

To illustrate "A New Pattern Stretcher," by Lieut. C. H. WITHERS.
The bed may extend either the full length of the closed stretcher, i.e., from "A" to "C" (fig. 1), or from "A" to "B" only. In the latter case two loose straps (alternatively used for the purpose of binding up stretcher for transport) are employed as supports between "B" and "C."

The canvas bed may be placed under the patient at the outset, i.e., in the field or at the casualty clearing station, and the patient carried down the lines of communications through to the general hospital on the same "bottom"; this being rendered possible by medical units on the lines of communications, namely, casualty clearing stations, ambulance trains, stationary and general hospitals, also hospital ships, each having as part of their equipment one or two frames with an adequate supply of beds.

The supply of "bottoms" at the front would easily be maintained by simply arranging that the relieving unit should pass up, in exchange, a loose one when taking over the patient for whom it had been found...
expedient to employ this special method of transport. By this means units would always, at least theoretically, have their full original issue on hand.

The canvas "bottom," it will be noticed from figs. 1, 2, and 3, carries two sets of eyelet-holes—the outer giving the regulation width, whilst the inner rows are intended for use when the stretcher is being permanently employed in confined spaces, or in the event of the canvas sagging appreciably in wear.

In spite of its manifest advantages and its apparently (from illustrations) complicated nature, this stretcher is but little more costly than the regulation pattern, whilst in actual practice it is a perfectly simple and efficient contrivance.

APPARATUS FOR THE UNLOADING OF SICK FROM HOSPITAL SHIPS, ETC.

By LIEUTENANT C. HAMILTON WITHERS.

Royal Army Medical Corps (T.)

The apparatus described below has been designed with the idea of facilitating the landing of sick from shipboard, and of reducing to a minimum the suffering to which the wounded are liable under the present antiquated method, owing to the shaking and jolting which is meanwhile more or less unavoidable. It is further pointed out that the adoption of this system would render it possible to unload a ship expeditiously with a considerably less number of bearers than is at present essential, and, in addition to the economy effected in this direction, the men employed would be obviously working under far less strenuous conditions.

The smooth running of wire ropeways is, of course, universally acknowledged, and it is therefore unnecessary to argue this fact in support of the system described herein.

The first two illustrations given are reproductions of the original drawings submitted to the authorities, whilst the remainder depict the plant as actually supplied. Fig. 1 shows the proposed method of working on a vessel of sixty-two feet beam at top of tide, whilst fig. 2 indicates the method it was suggested should be employed in the case of a vessel of forty-five feet beam at low tide.

The apparatus as actually installed consists primarily of wire ropes, which, supported on trestles fitted with rocking saddles, etc., run from the ship to the shore, extending right up to the train side, or such point of discharge as may be considered expedient.

As will be observed from fig. 3, the ship's portion of the plant consists of the necessary wire rope, the live tension winches (fig. 4) which take up any strain or slackness of the rope caused by the vessel rising and falling with the tide, etc.; also two trestles, one of the latter being fitted with small hand winches for controlling "whips."

The amount of tension required on the rope, which extends from the tension winch to anchorage on the shore beyond trestle "A," is