been of great advantage in deciding this point if the ears had been examined for old perforations on the patient's first admission.

Fortunately, Lieutenant Todd had had experience of tetragenus pneumonia at the Royal Victoria Hospital for Sick Children, Edinburgh, where he had found quinine of great value; he had already adopted the same drug in this case before the bacteriological finding was known, and, in view of the upshot, it would be certainly worth while to treat any future case in the same way. Such text-books of bacteriology as are available on the spot here are practically silent on the pathogenicity to man of the Micrococcus tetragenus; and I was very fortunate to find in Lieutenant Todd a colleague with first-hand knowledge of the tetragenus pneumonia which occasionally attacks children. Even he, however, had not met with a case of blood infection by this organism; so I have thought it worth while to place this case on record in spite of the fact that I am not in a position to give any references to similar cases that may have already been published.

I tender thanks to Lieutenants Todd and Acheson for their valuable help.

A CIRCULAR TYPE OF BRICK INCINERATOR FOR CAMPS AND TEMPORARY HOSPITALS.

By SERJANT-MAJOR E. B. DEWBERRY.

Royal Army Medical Corps.

In the Journal for January, 1914, on pp. 86, 87, and 88, photographs and explanatory matter were given of an improved circular type of brick incinerator.

This incinerator with certain improvements has been given a trial in connexion with the camps and temporary hospitals of the Expeditionary Force, with excellent results.

The incinerators shown in the photographs were in actual use on a camp at the time the pictures were taken. If these photographs are compared with those in the Journal mentioned above, it will be seen that a double row of bricks has been used in their construction; this was found to be necessary in order to cope with possible prolonged use, no bars were inserted.

Details of the construction of these incinerators are as follows:

Number of bricks required to build incinerator	400
Height	39 inches
Internal diameter at base	45
Internal diameter at top	24
Width of opening at base for clearing purposes (one opening on each side of incinerator)	12
Height of clearing opening	20
This type of incinerator, in addition to burning large quantities of ordinary camp refuse, was found capable of consuming ten latrine buckets of excreta daily.

The method adopted for mixing and burning the excreta is as follows: The urine is first poured off from the faeces into a straining receptacle; then a small quantity of camp refuse, ashes, etc., is placed in the bottom of a "small" latrine bucket. To this some of the faeces are added, then more refuse and more excreta until the bucket is half full. The contents are then placed in the incinerator, which must be well alight. Good stoking is, of course, most essential. All urine is disposed of by pouring it through a metal strainer of a suitable size (containing straw).

Agricultural pipes should run from the strainer to the bottom of the pit, ten feet deep, eight feet long, and five feet wide, which is filled entirely with stones. When the straw from the strainer becomes foul it is burned in the incinerator. After the latrine buckets are emptied they are washed in a tub containing a solution of liquor cresoli saponatus fortis, using an ordinary closet brush for cleansing purposes.
Canvas clothing is supplied for the use of the men carrying out these duties, and extra duty pay at 8d. per diem is usually given them.

It may be of interest to add that the strata in the camp referred to where urine pits were dug was as follows:

- 12 inches soil.
- 9 " dark sand.
- 9 " light sand.

Remainder consisted of chalk with an occasional mixture of flints.

NOTES ON ORGANISMS ISOLATED FROM THE BLOOD OF CASES SUFFERING FROM SYMPTOMS SIMULATING MILD ENTERIC FEVER OR PARATYPHOID FEVER.

By Major C. F. Wanhill.
Royal Army Medical Corps.

During three years' laboratory work in Mhow a very large number of blood cultures have been examined, since blood has to be taken in all cases, not malarial, which have continued pyrexia. In many cases Bacillus typhosus or B. paratyphosus A have been isolated, in some several organisms grew on the plates which were obviously contaminations, but in some pure cultures of organisms which had not previously been associated with disease-producing organisms were recovered.

Among workers in the Tropics there has been a conviction for years that besides the recognized disease-producing organisms there are organisms which, given favourable circumstances, can get access to the blood and cause a septicemia with symptoms similar to mild enteric fever. These diseases have been placed in the 'pyrexia of uncertain origin' class and it is to this class of disease that most attention has been paid of late years. A discussion as to the number of diseases which have been identified and the causative agent discovered enabling the disease to be removed from the pyrexia of uncertain origin class is not indicated here, but the class is becoming smaller and smaller yearly owing to improved methods of diagnosis and to bacteriological research. There are, however, a very large number of cases which can be attributed to no definite disease, and it may be, as the following results of blood examinations seem to show, that organisms, ordinarily non-pathogenic, can under favourable circumstances become pathogenic.

Only the cases in which organisms were recovered in pure culture from the blood are given, and it is thought that such organisms may be reasonably supposed to have actually come from the blood and not to be contaminations, as these would probably show several organisms and not one only. It is, of course, impossible to prove the organism by injecting into another person, as a volunteer would be hard to find and the Government would not allow such experiments. The results are therefore regarded as indefinite and can only be proved by weight of