Construct traps as follows: Take half a barrel (or box) and cut a hole five inches from the top and fit in jam tins as spout. Nail on a cover over one-third of the barrel covering the spout. Hammer out flat a biscuit tin, and use it as a vertical partition, nailing it to the cover already in position and to the sides to within four inches of the bottom of the barrel. Fix on the remaining two-thirds of the cover as a hinged lid. In this lid fix an open biscuit tin with perforated bottom. The tin should slope from the centre as shown in the diagram. This enables all debris to be emptied into a pail receptacle when the hinged lid is thrown open.

Fill up the barrel and trap with water, and place hay or straw in the biscuit tin to arrest solid matter. The trap drains into a soak pit or open drain, if possible.

The kitchen water, grease and debris from the cookhouse are emptied into the biscuit tin, solids are arrested, emptied as necessary and burnt. The grease accumulates on the surface water on the open side of the trap and is periodically skimmed off and burnt.

The trap attends to itself and requires only the supervision and cleaning inseparable from all improvised sanitary contrivances.

DESCRIPTION OF A SPLINT FOR A FRACTURED HUMERUS.

By CAPTAIN COLIN MACKENZIE.
Royal Army Medical Corps.

The splint which I am about to describe is one which should be of practical use in a casualty clearing station.

There it is of great importance that one should be able to dress any compound fracture of the humerus immediately prior to evacuation, without anaesthesia, but with the minimum of pain to the patient. This is possible if the limb remains fixed, and the splint is not moved during the dressing.

As the "Page" splint has proved so useful for cases of fractured femur, I have modified it so that it may be applied to the arm. It is obvious that if the fixed point of the upper end of the splint was against the axilla, there would be the possibility of pressure on the vessels, a state of affairs very undesirable where the wound may be already infected with gas-forming organisms.

The fixed point of the upper end of the splint is above the shoulder and is maintained in contact with the acromial process by two straps, one of which passes round the chest below the opposite axilla from the top of the splint, and the other from the same point on the splint to a belt round the waist of the patient. The chief difficulty in making the splint was the weakness of the shoulder portion. This was remedied by making the upper part of the splint with one piece of standard aluminium.
Clinical and other Notes

splinting, and I am indebted to Serjt.-Major Scott Badcock, R.A.M.C.,
for the suggestion of the curve over the anterior aspect of the shoulder
which I shall describe later. Staff-Serjt. Lee, R.A.M.C., made various
models on these lines and I am greatly indebted to him for the interest
and trouble he took in making them.

I will now briefly describe the method of making the splint from the
standard aluminium splinting.

The enclosed diagram drawn by Pte. Reynolds, R.A.M.C., and the
photographs taken by Captain Mcnee, R.A.M.C. (S.R.), will render the
method easier to understand.

To make the Upper Half of the Splint (see diagram).—Take a full
length of aluminium splinting (twenty rings).

(1) Bend on the edge at the middle point (X in figs. 1 and 2) to a
right angle.

![Diagram showing the completed splint. The point for attachment of the two
straps for fixation is shown X.](image)

(2) If it is desired to make a splint for the left arm, bend on the flat
the first six-ring length of the right-handed limb, holding the splinting
with the angle towards you and the rings uppermost in a semicircle
directed upwards, so that the sixth ring is on the same plane as the
left-handed limb.

(3) Now twist the remaining four-ring length portion of the right limb
with pincers through a right angle so that its edge is now in the same
plane as the flat of the semicircular portion (fig. 3).

(4) Bend on the flat in a gentle curve the first six-ring portion of the
left limb so that the lower four-ring portion is opposite the lower four-
ing portion of the right limb. The upper portion is now completed,
except for padding round the curved parts. If the splint is required for the right arm, in the above description substitute left for right, and vice versa in the above description in steps two, three and four.

To make the Lower Half of the Splint.—Take a seventeen-ring length of the splinting and bend on the flat at right angles just above the eighth ring. Bend again on the flat at right angles just beyond the ninth ring. The result is a "U"-shaped half (which should have the rings external). A step should be mounted to this half as in the lower portion of a Page splint.

The two portions are assembled in exactly the same method as the Page splint, three or four rings being bolted together, according to the length of arm of the patient. The step should look in the opposite direction to the semicircular portion of the upper part of the splint.

Fig. 1 shows a splint for the left arm completed.

Fig. 2.—Shows the splint applied. Note the straps 1 and 2 which secure fixation of the point X.

Method of Application.—It is better applied when the patient is under an anaesthetic, as when the wound is cleaned and dressed for the first time at a Clearing Station, although it can be applied without an anaesthetic, and without causing very much pain. The arm is held in the extended position by traction of the forearm, and slipped through the splint which is held so that the semicircular portion is anterior and internal to the limb. This semicircular portion is now brought to be over the anterior aspect of the shoulder, and so that the extended arm lies between and in the same plane as the straight bars of the splint.

The splint is fastened by a strap which passes round the chest (below the opposite axilla) from the point X on the diagram; this point is also fixed by a strap to a strap round the waist of the patient.

The arm is kept in a state of moderate extension by fixing the wrist to
Clinical and other Notes

the distal end of the splint by means of a flannel bandage, or a stirrup made with Mead’s strapping.

Strips of flannel or perforated zinc passed beneath the arm and forearm from one side of the splint to the other form a support for the limb.

Fig. 2 shows the splint applied to the left arm.

Advantages of the Splint.—(1) It is easily made and applied.

(2) It ensures fixation of the limb without pressure from the splint on either the limb or on the vessels of the axilla.

(3) If the lower end of the splint be supported, the patient can turn on his side without pain, thus facilitating dressing of other wounds and nursing.

Fig. 3.—Shows how, if the end of the splint be supported, the patient can turn on his side if other wounds require dressing.

The relative position of the arm to the patient can be changed if he so desires, and the arm may be freely abducted for purposes of dressing as shown in fig. 3.

(4) The wound can be dressed without removal of the splint.

(5) The maintenance of moderate extension ensures free drainage. Possibly the aluminium splinting will not prove sufficiently strong to stand the journey to the base and a splint of this nature made of malleable wire will prove more suitable.

Some are now being made, though for purposes of dressing the flexibility of aluminium splinting renders access to the wound easier.