Clinical and other Notes

contrasts. Blood platelets and the very fine filaments connecting the nucleus lobes in "polymorph" cells show up with special clearness. The value of Manson's blue as a stain for the malarial parasite is added to by the use of eosin.

The strengths and times recommended above may be taken as applying in all cases of ordinary routine blood examination, such as the differential leucocyte count or the search for parasites. But if finer results are desired they may be obtained at the expense of rapidity by diluting the blue and eosin ten times and allowing them to operate each for about five minutes. Practice with the stains at these dilutions will reveal the exact times needed for the most beautiful pictures.

The most obvious advantages of the method are the simplicity of the stains used, the fact that they do not deteriorate by being kept and the great saving of time effected.

Manson's blue is readily made up and only improves by keeping. The whole staining operation does not take more than two minutes. Moreover, it is well under control, and a slight variation of the times given above may be made to produce a desired difference in the results.

THE STORY OF A TOOTH PLATE—AN UNUSUAL WAR INJURY.

BY MAJOR GORDON TAYLOR.
Royal Army Medical Corps.
Senior Assistant Surgeon to the Middlesex Hospital, etc.

During the Battle of the Somme a soldier was buried in his shelter by a large shell. He was dug out from amongst the debris in an unconscious state, and ultimately placed on a hospital barge and thus conveyed to the Base. When he recovered consciousness on the barge, one of his first requests was for the artificial tooth-plate which he had been wearing when he was rendered unconscious by the shell explosion, and which he now missed. The denture—an upper one—was produced from his wallet by the attendant orderly, but the patient, remarking its size and the number of teeth, quickly declared his doubt as to its being his, or if it were, he assured those in attendance that it must have been broken and that part of it was missing.

The patient had also shown some signs of a fracture of the skull, and to this was ascribed the difficulty in swallowing of which he complained. No radiogram was apparently taken, and he was speedily evacuated to England, and admitted into one of the Auxiliary Military Hospitals at Eastbourne. The man's story led to an investigation of the denture which showed clear evidence of having been fractured across its palatal and alveolar portions. Examination with the screen revealed the presence of a foreign body in the thorax, and an X-ray plate showed a denture with two teeth opposite the middle piece of the sternum.

I was hurriedly asked by the medical staff of the hospital to come down from London and try to remove it. The use of a Bruning's oesophagoscope fitted with a Hill's tube enabled one to obtain a good view of the offending denture, and it was easily extracted, per vias naturales, by means of an Irwin Moore's forceps. So far as his gullet was concerned, recovery was quite uneventful, but the original diagnosis of a fractured base of the skull was only too surely confirmed by the
development of a pulsating exophthalmos, which was successfully treated by ligature of the internal carotid artery by an able Eastbourne surgeon.

The case is of interest in that a fracture of an upper dental plate was produced without any injury of the superior maxilla. This injury is by no means unique, for I have heard of similar accidents in the present War, but the story of this particular case, where one of the fragments of the broken denture was actually swallowed by a patient rendered unconscious by the same injury that fractured the dental plate, must be almost without parallel.

Reviews.

MODERN MEDICINE AND SOME MODERN REMEDIES. By Thomas Bodley Scott. With a preface by the late Sir Lauder Brunton, Bart., F.R.S. London: H. K. Lewis and Co., Ltd. 7 x 4 1/2. Pp. xi and 169. 6s. net.

In daily life medicine still continues to be more of an Art than a Science, as accurate measurements are only applicable under certain limiting conditions, of which the training of the observer is not the least important. Accuracy of measurement is of course only relative; all scientific processes involve the passing of material through a series of sieves of increasing fineness of mesh, and if we are content to correlate the extent of our conclusions with the degree of coarseness of the mesh, we may still work in a truly scientific manner, and the work of the observer who is unable to apply exact methods may be of great value provided he recognizes his limitation—frames his working hypothesis accordingly and declines to extend his conclusions beyond the boundary that is justified by his method of working.

Further, the skilled observer notes, remembers, or, better still, records the incommensurables, and, uses this knowledge as a basis for further and more exact observation, as his method becomes more delicate and for future action where his intelligence (intuition if you will) suggests that the conditions are the same. This last—empiricism—is the art of medicine; no working hypothesis is involved beyond the postulate that things which are equal to the same thing are equal to one another.

The science of medicine has however developed so far that a third element is involved, the practical use in everyday work of the results of experimental work by trained observers, having opportunities for, and means of measurement.

This, at its best, is the same process as that by which the mechanical engineer reduces to practical working formulas the rigid abstractions of the pure mathematician. This adjustment of experimental to practical conditions can hardly be carried out except by those who understand the principles which underlie the experimental work.

The intelligent general practitioner (the adjective would appear to be necessary) then makes use of three processes—two involving some reasoning, the third memory and the ability to recognize a previous combination.

The late Sir Lauder Brunton was a very great artist in medicine, and especially in the use of experimental work in everyday work. He was, moreover, a man of wide experience of the methods and actual work of his less distinguished brethren. His preface calls attention to the great waste of knowledge acquired through many laborious years by the general practitioner in the course of his daily duties, a waste which has increased since the system of apprentice-