Clinical and other Notes

The rubber teats provided with the dropping pipettes issued under the direction of the Medical Research Committee, soon lose much of their elasticity, and it then becomes difficult to fill the pipettes to a sufficient extent and to empty them completely.

I have made a simple attachment to replace these teats, which obviates these difficulties. The attachment, which consists of a rubber stopper, and a heavy rubber vaccine bottle cap, is made as follows:

Bore a hole through the centre of the long axis of the rubber stopper; this hole should be of such a size as to fit tightly over the end of the pipette. Fit a heavy rubber vaccine bottle cap over the larger end of the rubber stopper and fasten it in place by means of a string, small wire, or rubber cement. Rubber cement is not suitable when a solution to be used in the pipette dissolves the cement. The rubber cap should be adjusted so that the vacuum produced is not greater than that required to fill the pipette. A very fine perforation in the centre of the rubber cap makes it easier to prevent the formation of bubbles in the pipette; this perforation may be made with a red-hot needle. A piece of pressure rubber tubing one inch long may be used instead of a rubber stopper.

When a pipette fitted with this attachment is held between the fingers and the palm of the hand, the thumb is left free to manipulate the rubber cap by pressing directly down upon it.

Pipettes fitted with this attachment have been used in our laboratory for some months, and have been found to be more easily and more rapidly manipulated, and less tiring on the hand than when an ordinary teat is used.

The accompanying photograph shows a pipette with its attachment, and the method of manipulating it.

A SIMPLE HOT-AIR CHAMBER FOR USE IN ADVANCED AND MAIN DRESSING STATIONS.

By LIEUTENANT-COLONEL A. H. HABGOOD.
Royal Army Medical Corps.

It is now generally recognized that the condition of shock in which many wounded arrived at the dressing station is directly connected with cold, and the remarkable improvement which is seen in a pulseless and semi-conscious patient when warmed up is a sufficient incentive to provide warmth at the earliest possible moment.

The hot-air chamber has been used in this unit since the battle of Arras, and models varying somewhat in details of construction have been seen in various dressing stations since April, 1918.

The apparatus as illustrated has proved to be the most efficient model and has the advantage of being very easily made.

- "A" is an inverted four-gallon oil drum with a slit "B" to provide air and to enable the wick of a Beatrice stove placed under the drum to be raised or lowered. "C" is a piece of stove piping or tin bent into a pipe which connects the drum with "D," a sheet of tin made from a four-gallon petrol tin. These connexion are loose to facilitate adjustment. The sheet "D" is attached to a Thomas'
suspension bar or aluminium splinting frame and is continued at right angles under the bar towards the stretcher grips. By means of four pipes “C,” four stretchers can be heated from the one drum “A.”

The suspension bar is placed at the foot of the stretcher so that the right-angled ledge just reaches the canvas, and one or two others are placed at varying intervals along the stretcher.

A folded blanket is placed on the stretcher reaching as far down as the ledge of the plate “D,” and a blanket is placed over the bars “D” and “E,” tucked in all round, its upper end round the shoulders of the patient.

A patient can be warmed and dried in from about ten minutes to a quarter of an hour, but as the chamber gets very hot in a very short time, he must be watched and the flame of the Beatrice stove adjusted according to the required temperature. This can be done through the slit “B” without disturbing the apparatus.

THE PARAFFIN TREATMENT OF BURNS.

BY LIEUTENANT-COLONEL A. J. HULL.
Royal Army Medical Corps.

The introduction of new non-irritating antiseptics has led to several modifications in the paraffin treatment of burns.

Various preparations of paraffin have been made under my direction, containing flavine, brilliant green, chloralamine T., etc., dissolved in the paraffin base. These preparations have given a very extensive trial. Another direction in which the new antiseptics have given scope for improvement has been the treatment of the burn by an antiseptic before the application of the paraffin. The results following this modification have been so satisfactory that we have adopted it as a routine method.

The method of application of the paraffin base is the same in all cases. The burn is first of all washed with normal saline (1 in 1,000 flavine solution or proflavine has now been substituted). The burn is dried with gauze or an electric drier. A layer of paraffin is applied at a temperature of about 55° to 60° C. A thin layer of wool is placed over the first layer of paraffin, and a second layer of paraffin at the same temperature painted over the wool. A dressing of wool and bandage is applied over the paraffin dressing. The dressing is changed every twenty-four hours. It is important to paint or spray on a sufficiently thick layer of paraffin. If the temperature of the paraffin is too high, the layer is