a genuine fracture; the jagged edges of the fragment bear this out. Whether the process was developed from a separate centre or not is uncertain, but probably it was part of the main bone from which it was broken off.

PLAN OF SANITARY DHOBI GHAT.

By Lieutentant-Colonel L. Reynolds.

Indian Medical Service.

Front wall, nine feet high. Erected against the prevailing wind for choice. It is sufficiently high to catch all the forward splashes from the wet clothes as the dhobi swings them over his head.

Side walls, nine feet high, run backwards from the front wall, as far as the back of the water tanks.

Dhobi stones faced with teak wood, with transverse corrugations, slope downwards towards the front wall. The corrugations help in kneading the dirt out of the clothes, the wood face is less hard on the clothes and buttons than stone. The dirty water squeezed from the clothes runs down the face of the dhobi stone into the gutter, G², overflow at the sides into the water tank being guarded against by a deep groove on either side, leading into the gutter, G². This dirty water escapes from the gutter, G², by the drain, D², into the gutter, G³, at the base of the dhobi stone.

Owing to the slope splashes from the dhobi stone are directed towards the front wall and away from the dhobi, who stands facing the front wall. A splash gutter, G¹, runs round the side walls and front wall, sloping from the side walls on either side to the centre of the front wall, where the water passes by the drain, D¹. This gutter collects all splashes of dirty water from the walls and prevents them from fouling the water in the tank.

The tank contains the water for washing the clothes. At the bottom of the tank is a washout escape which is closed with a removable plug of wood. There is also an overflow pipe from the bottom of the tank, opening above at the front of the front wall, just below the level of the top of the tank. Thus when the tank is overfull of water the overflow is from the bottom of the tank where the water is dirtiest. This overflow does not foul the platform.

The platform extends backwards twenty feet from the tank and is sufficient to catch all backward splashes from the clothes when swung by the dhobi. It is suitably sloped, so that all dirty water runs into the gutter, G⁴, on the right-hand side. This gutter is continued round to the front of the ghat, where the water is disposed of by a soak-pit or irrigation area, according to the nature of the soil and rainfall.

This dhobi ghat was erected by me at the Indian Station Hospital,
Maymyo, Burma, and worked very satisfactorily. The front and side walls give good shelter to the dhobis from wind and rain. The dhobis do not stand in the tanks and keep surprisingly dry, but at times get wet, and wind playing on their wet clothes is very likely to cause a chill. Before building this ghat the dhobis, four of them, were frequently going sick. After the ghat was in use, the only casualty in eighteen months was due to syphilis, contracted in the usual way. The ground around the ghat never became fouled, even in the rainy season. The dhobis were obviously pleased with the ghat, and worked willingly and well. The plan has been deposited with the garrison engineer, Maymyo. These diagrams, kindly drawn by Capt. H. Williamson, I.M.S., are from memory, so the height of the walls and size of the platform should be verified before building. This can easily be done, as I did originally, by stretching a bed sheet between two upright standards and marking on the ground where
Clinical and other Notes

the dhobi should stand. The dhobi then swings wet clothes, and the extent of the splashes is noted on the sheet in front and on the ground behind the dhobi. Splashes from the dhobi stone may be ignored, as they will reach scarcely halfway up the front wall. The height of the dhobi stone should also be checked; on this point I consulted the head dhobi.

The ghat cost Rs. 800 to build in Maymyo, where the cost of materials and labour is much higher than in India. Walls are of brick, dhobi stones of brick and cement, with teak-wood face bolted on, the bolt heads sunk and covered with wood caps level with the surface. These stones must be stoutly built, otherwise the beat of the clothes will jump the wood face. Platform is made of concrete slabs.

METHOD OF STERILIZING SMALL QUANTITIES OF WATER.

By Major S. M. Hattersley, M.C.
Royal Army Medical Corps.

The following method can be used for sterilizing water by means of water-sterilizing powder in small receptacles such as petrol tins, camel tanks, water bags, water casks, etc.

Carry out Horrocks' test on the water and determine how many measures of water-sterilizing powder are required for 110 gallons. Multiply the number of measures required by the number of gallons the receptacle holds. The figure so obtained will be the number of measures of the black-cup solution it is necessary to add to the water in the receptacle.

Example.—It was required to sterilize the water in a five-gallon tank. A Horrocks test was carried out and it was found that the water required two measures of sterilizing powder to 110 gallons. Multiply two by five, equals ten. Ten measures of the solution in the black-cup of the Horrocks test were added to the water in the tank.

The measure referred to is found in each four-ounce and thirty-pound tin of water-sterilizing powder. There are also two of these measures in a water-testing sterilization case.