Clinical and other Notes.

THE CREOSOTE TREATMENT OF LOBAR PNEUMONIA.

By MAJOR R. MCKINLAY,
Royal Army Medical Corps.

During the year 1932, twenty-two cases of lobar pneumonia were admitted to the Indian Wing of the British Military Hospital, Belgaum, Deccan, Southern India.

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulars</td>
<td>9</td>
<td>Nil</td>
</tr>
<tr>
<td>Territorials</td>
<td>1</td>
<td>Nil</td>
</tr>
<tr>
<td>Reservists</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Followers</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

With one exception, all cases were treated with creosote enemata according to Schoull and Weiller's method, as described by Dr. Ian McDonald in a letter to the British Medical Journal of December 12, 1931, p. 1111.

Considering the types of the subjects (mostly recruits) and their presumed high degree of susceptibility (most of them rural dwellers), the results were most gratifying.

As a rule, under the creosote method temperatures are lower than is usual in this disease, crisis is hastened and frequently the temperature falls by rapid lysis. Also—most striking feature of all—toxæmia is lessened. In fact, in this group of cases the observation made in the letter to the British Medical Journal was confirmed, viz.: "The action of creosote in the purely pneumococcic conditions seems to be almost specific, like serum; when it fails, a streptococcic infection must be feared."

Of the fatal cases: (a) One, a very toxic case, was not treated with creosote. It was considered unfair to expose him to the grave risks attendant on a trial method of this kind.

(b) Another was dangerously ill on admission: from the very outset delirious and extremely toxic. The Command laboratory reported: "A case of virulent pneumococcic pneumonia."

(c) The third was a sweeper, not living in his unit's lines, who had been absent from duty for three days and who was brought by his friends to draw his pay on August 1. He was then ill, and was admitted dangerously ill on August 2. Unfortunately, I was on leave at the time so did not see him. Creosote treatment was begun on August 4. It was too late: death took place two days after.

To date (January 28, 1933) four more cases of lobar pneumonia have
been admitted, of which two were very ill indeed. Under creosote, three have done well. The fourth is still dangerously ill with high fever, delirium and toxæmia—one of the worst cases I have seen. However, I am sure that were it not for the creosote treatment this man would now be dead. I hope to pull him through.

Territorial training is now in progress, and Reservist training begins in March. Should the results of creosote treatment continue to be as favourable as heretofore, a further communication on the subject will be made.

Meanwhile, I can heartily recommend this simple and inexpensive procedure to those who have to tackle the king of destroyers.

---

NOTE ON A NON-MANNITE-FERMENTING ORGANISM RECOVERED FROM TWO CASES OF DYSENTERY.

By Captain G. T. L. Archer,
Royal Army Medical Corps.

The organism which is the subject of this note was isolated from two cases of dysentery which occurred in Wellington, India, in 1930. As it resembles, yet differs from, both B. dysenteriae Shiga and B. dysenteriae Schmitz, it is thought that a brief description of its characters may prove of interest, and possibly of value to others who are working at this subject.

Both cases presented the usual clinical features of bacillary dysentery. Microscopically the exudate was of the "indefinite" type. The organism was in both cases isolated early in the disease. In the second of the cases an amoeba was seen on one occasion, but as this did not contain erythrocytes, and as subsequent examinations were negative, it was not considered to be E. histolytica.

As the organisms from the two cases were identical in their biochemical and serological characters, they will be named in this note by the laboratory index number of the first, viz., J.L.

MORPHOLOGICAL AND BIOCHEMICAL CHARACTERS.

<table>
<thead>
<tr>
<th>Nature of organism</th>
<th>Size</th>
<th>Gram's stain</th>
<th>Lactose</th>
<th>Glucose</th>
<th>Mannite</th>
<th>Dulcitol</th>
<th>Indol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-motile bacillus</td>
<td>2 to 4 μ</td>
<td>Neg.</td>
<td>No change</td>
<td>Acid</td>
<td>No change</td>
<td>Acid after four days</td>
<td>Neg.</td>
</tr>
</tbody>
</table>

J.L. therefore differs from B. dysenteriae Shiga in that it ferments dulcitol, and from B. dysenteriae Schmitz, in that it ferments dulcitol and fails to produce indol in peptone water.