A two gallon petrol tin would function equally well but not as well as a four gallon kerosine tin.

(i) Cut the top of the tin diagonally across from B to D leaving the handle attached if possible (see sketch).
(ii) Cut one side diagonally from E to B.
(iii) Cut the adjacent side diagonally from E to D.
(iv) Discard the triangular piece of tin cut off.
(v) Perforate the corner at "G" with small holes from within outwards with an average sized nail or point of a bayonet or kukri.
(vi) Place this tin at an inclined angle on the lower tin, the bottom of which is complete if required as a receptacle for the urine, or knocked out if required to be placed over a soak pit or introduced into another tin in order to increase the height of the urinal to a more convenient level. The top tin must be anchored to the bottom by wire in localities subject to storms and wind.

Paint the outside of the tin with white wash; the inside of the tins, especially the topmost one, with black crude oil in order to preserve the inside from rusting as well as to serve as a better target at night.

The whole thing can be constructed by any individual with a clasp knife, bayonet or kukri and needs no tinsmith or other expert artisan.

A DEVICE TO REPLACE THE WALKING IRON IN PLASTER CASES.

BY LIEUTENANT-COLONEL J. LAWSON,

Royal Army Medical Corps.

The experience which has been gained in dealing with a large number of soldiers fitted with lower limb plasters and walking irons has shown that the Bohler walking iron is in the majority of Service cases unsatisfactory. The chief drawbacks are the bending sideways of the projecting portion, the fracture of the iron at the point where it is drilled and the damage which it is apt to do to bedding. It may be that the first two objections are more often seen in Service patients who are on their feet more and rest less than civil patients and who are required to do a form of physical training which, although specially designed for them, is quite energetic.

Various alternatives to the Bohler iron have been tried out. For example, a simple plaster heel has been used and, while satisfactory in wards, wears down much too quickly on pavements or when subjected to water as on muddy ground. A wooden heel fixed with plaster bandages is more satisfactory but leaves the front sole of the plaster exposed to wet and is apt to work loose while, if the sole of the plaster is at all yielding, the pressure exerted may be too localized. A wooden sole with wooden heel affixed
Clinical and Other Notes

with plaster bandages has also been used but in all these alternatives the patient has to take his "muddy boot" to bed with him.

The device now adopted is a wooden sole and heel which can be detached at night. This "sabot" can be made from scrap materials by a semi-skilled carpenter. The sole is 9, 10 or 11 inches long, 4 to 4½ inches wide at the base of the toes, tapering to 3 to 3½ inches at the heel. It is of ¾ inch wood bevelled at the toe. The heel is a 2-inch cube fixed with screw nails. It is slightly rounded on the walking surface and, when possible, tipped with rubber. A short "upper" made of tin or other stiff material is nailed to the rear portion of the sole. The sabot is retained in position by a strap across the front of the plaster behind the toes and a second strap from the heel forwards across the front of the ankle. This latter strap retains the upper in position.

In cases in which it is intended to use the sabot the plaster sole should be made flat without an inclination to either side so that the sole fits snugly and without tilting. The patient wears a sock over the plaster beneath the sabot.

The men fitted with this sabot walk easily, do not notice the slight additional weight and, in most cases, prefer it to any other walking device.

The use of wood in constructing the sabot results in rather a clumsy appearance which, if light metals such as duralamin were available, would be obviated.

The drawing gives an idea of the type of article aimed at but modifications continue to be made in the light of experience and depending on the materials available.