Skip to main content
Log in

The measurement of blood density and its meaning

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Density is defined as mass per unit volume. The classical technique to measure the density of fluids consists of a determination of mass and volume. Blood density is proportional to hematocrit or, more exactly, to the total protein concentration of blood; only to a minor extent is blood density influenced by other plasma solutes.

Since the introduction of the mechanical oscillator technique for the continuous recording of fluid density a sizeable amount of experience has accumulated. This review summarizes recent work performed with this technique. It appears that the scientific interest in a variable like blood density depends on the availability of a suitable and simple method. Until the oscillator technique was available the measurement of density was too complicated or too inaccurate for routine laboratory use. A further new technique permits us to determine fluid densities by measuring sound velocity transmission.

The density dilution method can be used for the determination of distribution volumes, of flow through organs, and of the cardiac output. The influence of temperature and of certain artifacts like acceleration forces in the density measuring device have to be considered and may be used for additional diagnostic purposes like determination of erythrocyte sedimentation velocity. The new technique opens a reasonable simple way to study fluid shift between interstitial space and capillaries. The arterio-venous density gradient in an organ depends on the lymph production. The injection of a hypertonic solution leads to an osmotic fluid shift from the extravascular space towards the blood. This fluid shift can be recognized by a reduction of the blood density. A simple model for the description of this reaction is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernhardt, J, Pauly HH (1980) Pycnometric versus densimetric measurements of highly viscous protein solutions. J Phys Chem 84:158–162

    Article  Google Scholar 

  2. Effros RM (1974) Osmotic extraction of hypotonic fluid from the lungs. J Clin Invest 54:935–947

    PubMed  Google Scholar 

  3. Gallasch E, Moser M, Kenner T (1986) Characterization of arteriovenous transfer functions in the coronary circulation. Proc Symp CVSD Zuoz 5:1–3

    Google Scholar 

  4. Gamas L, Lee JS (1986) Density indicator method to measure pulmonary blood flows. J Appl Physiol 60:327–334

    Article  PubMed  Google Scholar 

  5. Haas G (1986) Zur Biologie der Alterung von Blutkonserven—ein neuer Anwendungsbereich der Biegeschwingermethode. Dissertation, Univ Graz

  6. Heimel H, Leopold H, Stabinger H (1983) Verfahren und Vorrichtung zur Untersuchung von Flüssigkeitseigenschaften. AT-Patent 380339

  7. Hinghofer-Szalkay H (1980) Untersuchungen zum Einfluß von Körperlage und Schwerkraft auf die Eigenschaften von Blut und Plasma. Klin Wschr 58:1147–1154

    Article  PubMed  Google Scholar 

  8. Hinghofer-Szalkay H (1985) Volume and density changes of biological fluids with temperature. J Appl Physiol 59:1686–1689

    PubMed  Google Scholar 

  9. Hinghofer-Szalkay H (1986) Method of high-precision microsample blood and plasma mass densitometry. J Appl Physiol 60:1082–1088

    PubMed  Google Scholar 

  10. Hinghofer-Szalkay H (1986) Continuous blood densitometry: fluid shifts after graded hemorrhage in animals. Amer J Physiol 250:H342-H350

    PubMed  Google Scholar 

  11. Hinghofer-Szalkay H, Greenleaf JE (1987) Continuous monitoring of blood volume changes in humans. J Appl Physiol 63:1003–1007

    PubMed  Google Scholar 

  12. Hinghofer-Szalkay H, Harrison MH, Greenleaf JE (1987) Early fluid and protein shifts in men during water immersion. Eur J Appl Physiol 56:673–678

    Google Scholar 

  13. Hinghofer-Szalkay H, Leopold H, Kenner T, Holzer H (1980) Über den thermischen Ausdehnungskoeffizienten des Blutes und seiner Komponenten. Biomed Tech 25:151–157

    Google Scholar 

  14. Hinghofer-Szalkay H, Kravik SE, Greenleaf JE (1988) Effect of lower body positive pressure on postural fluid shifts in men. Eur J Appl Physiol 57:49–54

    Article  Google Scholar 

  15. Hinghofer-Szalkay H, Moser M (1986) Fluid and protein shifts aft postural changes in human. Amer J Physiol 250:H68-H75

    PubMed  Google Scholar 

  16. Hinghofer-Szalkay H, Teubl I, Dohr G, List W (1984) Volumen- und Dichteverteilung von Mikroaggregaten in konserviertem Blut. Melsunger Med Mitt XII Bibliomed:167–175

  17. Holzer H, Leopold H, Hinghofer-Szalkay H, Stübchen-Kirchner H, Maurer E (1978) Gesamteiweißbestimmung im Serum durch Dichtemessung nach der Biegeschwingermethode. J Clin Chem Clin Biochem 16:391–395

    PubMed  Google Scholar 

  18. Holzer H, Pogglitsch H, Hinghofer-Szalkay H, Kenner T, Leopold H, Passath A (1979) Die kontinuierliche Messung der Blutdichte während der Hämodialyse. Wien Klin Wschr 91:762–765

    PubMed  Google Scholar 

  19. Johnston RS, Dietlein LF (1977) Biomedical results from Splacelab. NASA, Washington DC

    Google Scholar 

  20. Kenner T (1982) Physiological measurement in circulation research. Med Progr Technol 9:67–74

    Google Scholar 

  21. Kenner T (1982) Continuous recording of the blood density—a new method for the study of cardiovascular dynamics. IEEE Frontiers of Engineering in Health Care:258–263

  22. Kenner T (1983) Small arteries and the interaction with the cardiovascular system. In: Rodkiewicz CM (ed) Arteries and arterial blood flow. Springer-Verlag, Wien, New York, pp 217–326.

    Google Scholar 

  23. Kenner T, Hinghofer-Szalkay H (1984) Measurement of blood and plasma density with the mechanical oscillator technique. Proc 2nd Europ Symp Life Sciences in Space:179–182

  24. Kenner T, Hinghofer-Szalkay H, Leopold H (1977) The continuous high precision measurement of the density of flowing blood. Pflügers Arch 370:25–29

    Article  Google Scholar 

  25. Kenner T, Hinghofer-Szalkay H, Leopold H (1977) Experimental observation and interpretation of capillary fluid shifts using a new method. Cardiovascular and Pulmonary Dynamics 71:283–290

    Google Scholar 

  26. Kenner T, Hinghofer-Szalkay H, Leopold H, Pogglitsch H (1977) Verhalten der Blutdichte in Relation zum Blutdruck im Tierversuch und bei Hämodialyse von Patienten. Z Kardiol 66:399–401

    PubMed  Google Scholar 

  27. Kenner T, Moser M, Hinghofer-Szalkay H (1980) The application of the density dilution method for the observation of fast osmotic fluid shifts in the lung circulation. Biomed Technik 25:139–143

    Google Scholar 

  28. Kenner T, Moser M, Hinghofer-Szalkay H (1980) Determination of cardiac output and of transcapillary fluid exchange by continuous recording of blood density. Basic Res Cardiol 75:501–509

    PubMed  Google Scholar 

  29. Kenner T, Moser M, Hinghofer-Szalkay H, Mohl W (1984) Indirect determination of fluid filtration and reabsorption in the microcirculation of the myocardium. Biomed Technik 29:108–116

    Google Scholar 

  30. Kenner T, Moser M, Mohl W (1984) Wave reflections and pressure flow relations in the coronary circulation. In: Mohl W, Wolner E, Glogar D (eds) The Coronary Sinus. Steinkopff, Darmstadt, pp 60–72

    Google Scholar 

  31. Kenner T, Moser M, Mohl W (1985) Arteriovenous difference of the blood density in the coronary circulation. Transact ASME, J Biomech Eng 107:34–40

    Google Scholar 

  32. Kenner T, Moser M, Mohl W, Tiedt N (1986) Inflow, outflow and pressures in the coronary circulation. In: Mohl W, Faxon D, Wolner E (eds) CSI—a new approach to interventional cardiology. Steinkopff, Darmstadt, pp 15–26

    Google Scholar 

  33. Kratky O, Leopold H, Stabinger H (1969) Dichtemessung an Flüssigkeiten und Gasen auf 10−6 g/cm3 bei 0,6 cm3 Probenvolumen. Z Angew Physik 27:273–277

    Google Scholar 

  34. Leach SI (1973) Physical principles and techniques of protein chemistry. Part C, Chapter 17. Academic Press, NY, pp 1–75

    Google Scholar 

  35. Lee JS, Kenner T (1982) Microvascular dynamics. In: Kenner T, Busse R, Hinghofer-Szalkay H (eds) Cardiovascular system dynamics, models and measurements. Plenum Press, NY, London, pp 413–430

    Google Scholar 

  36. Lee JS, Lee LP, Villafance M, Moser M, Kenner T (1984) Artificial ventilation causes hematocrit fluctuations in the arterial blood. Fed. Proc 43:3725

    Google Scholar 

  37. Lee JS, Lee LP (1986) Ventilatory changes of pulmonary capillary blood volume assessed by arterial density. J Appl Physiol 61:1724–1731

    PubMed  Google Scholar 

  38. Lee JS, Lee LP, Evans MV, Gamas L (1985) A density method to quantify pulmonary microvascular hematocrit. Microvasc Res 30:222–234

    Article  PubMed  Google Scholar 

  39. Leopold H (1986) Der Einfluß der Viskosität bei der Dichtemessung nach der Biegeschwingermethode. Österr Ges Biomed Tech Mitteilungsblatt 1:B1-B7

    Google Scholar 

  40. Leopold H, Hinghofer-Szalkay H, Kenner T, Holzer H (1978) Schnelle gravitationsunabhängige Bestimmung der Sedimentationsrate des Blutes. Biomed Tech 23:99–103

    Google Scholar 

  41. Leopold H, Jellinek R, Tilz GP (1977) The application of the mechanical oscillator technique for the determination of the density of physiological fluids. Biomed Tech 22:231–235

    Google Scholar 

  42. Lloyd Jones E (1987) On the variations in the specific gravity of the blood in health. J Physiol (London) 8:1–14

    Google Scholar 

  43. Mohl W, Punzengruber T, Moser M, Kenner T, Heimisch W, Haendchen R, Meerbaum S, Maurer G, Corday E (1985) Effects of pressure controlled intermittent coronary sinus occlusion on regional ischemic myocardial function. J Amer Coll Cardiol 5:939–947

    Google Scholar 

  44. Moser M (1980) Die Anwendbarkeit von Blut- und Plasmadichtemessungen mittels der Biegeschwingermethode auf Fragen des Flüssigkeitsaustausches in der Mikrozirkulation. Dissertation, Univ Graz

  45. Moser M, Hinghofer-Szalkay H, Kenner T, Holzer H (1980) Die Bestimmung des kolloidosmotischen Durcks aus der Plasmadichte mittels der Biegeschwingermethode. J Clin Chem Clin Biochem 18:233–236

    PubMed  Google Scholar 

  46. Moser M, Kenner T (1988) Blood flow and blood volume determinations in aorta and in coronary circulation by density dilution. Basic Res Cardiol 83:577–589

    Article  PubMed  Google Scholar 

  47. Moser M, Mohl W, Gallasch E, Kenner T (1984) Optimization of pressure controlled intermittent coronary sinus occlusion intervals by density measurement. In: Mohl W, Wolner E, Glogar D (eds) The Coronary Sinus. Steinkopff, Darmstadt, pp 529–536

    Google Scholar 

  48. Moser M, Mohl W, Kenner T (1984) The arteriovenous density gradient as an index for myocardial function. In: Mohl W, Wolner E, Glogar D (eds) The Coronary Sinus. Steinkopff, Darmstadt, pp 497–507

    Google Scholar 

  49. Moser M, Schneditz D, Gallasch E, Kenner T (1988) Investigation of pulmonary and coronary microvascular properties by blood density measurements. Proc Symp Frontiers Cardiopulm mech, p 57

  50. Moser M, Vauti F, Pinter H, Kenner T (1985) Circadian variation of volume and concentration of orthostatically shifted-fluid. The Physiologist 28:S-169

    Google Scholar 

  51. Pogglitsch H, Waller J, Holzer H, Kenner T, Leopold H, Hinghofer-Szalkay H Hinghofer-Szalkay H (1977) Relationship between hemodynamic and blood volume regulation during hemodialysis and hemofiltration. Opuscula Med 18:56–65

    Google Scholar 

  52. Roy ChS (1984) Note on a method of measuring the specific gravity of the blood for clinical use. Proc Physiol Soc (London), pp 9–10

  53. Schmid M, Schindler R, Weigand K (1986) Is albumin synthesis regulated by the colloid osmotic pressure? Effect of albumin and dextran on albumin and total protein synthesis in isolated rat hepatocytes. Klin Wschr 64:23–28

    Article  PubMed  Google Scholar 

  54. Schneditz D, Kainz T, Moser M, Kenner T (1987) Influence of tonicity on the viscoelastic properties of blood during isovolemic dilution. Basic Res Cardiol 82:388–395

    PubMed  Google Scholar 

  55. Schneditz D, Kenner T, Gallasch E, Rainer F (1987) Quick measurement of hematocrit and erythrocyte sedimentation rate by means of a density tracking method. Blut 55:153–163

    Article  PubMed  Google Scholar 

  56. Tilz GP, Leopold H (1972) Einführung eines neuen digitalen Flüssigkeitsdichtemeßgerätes in die klinische Diagnostik. Wien Med Wschr 84:697–699

    Google Scholar 

  57. Vauti V, Moser M, Pinter H, Kenner T (1985) Daycourse of blood and plasma density in relation to other hematological parameters. The Physiologist 28:S-171

    Google Scholar 

  58. Voornveld van HJA (1902) Das Blut im Hochgebirge. Pflügers Arch 92:1–60

    Article  Google Scholar 

  59. Wetterer E, Kenner T (1968) Dynamik des Arterienpulses. Springer, Berlin Heidelberg NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenner, T. The measurement of blood density and its meaning. Basic Res Cardiol 84, 111–124 (1989). https://doi.org/10.1007/BF01907921

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907921

Key words

Navigation