Skip to main content
Log in

Management of Vasodilatory Shock

Defining the Role of Arginine Vasopressin

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The rationale for an arginine vasopressin (argipressin) infusion was put forward after it was discovered that patients in shock states might have an endogenous arginine vasopressin deficiency. Subsequently, several investigations impressively demonstrated that arginine vasopressin can successfully stabilise haemodynamics even in advanced vasodilatory shock. We report on physiological and pharmacological aspects of arginine vasopressin, and summarise current clinical knowledge on employing a continuous arginine vasopressin infusion in critically ill patients with catecholamine-resistant vasodilatory shock of different aetiologies. In view of presented experimental evidence and current clinical experience, a continuous arginine vasopressin infusion of ∼2 to ∼6 IU/h can be considered as a supplemental strategy to vasopressor catecholamines in order to preserve cardiocirculatory homeostasis in patients with advanced vasodilatory shock. Because data on adverse effects are still limited, arginine vasopressin should be reserved for patients in whom adequate haemodynamic stabilisation cannot be achieved with conventional vasopressor therapy or who have obvious adverse effects of catecholamines that result in further significant haemodynamic deterioration. For the same reasons, arginine vasopressin should not be used as a single, alternative vasopressor agent instead of catecholamine vasopressors. Future prospective studies will be necessary to define the exact role of arginine vasopressin in the therapy of vasodilatory shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII

Similar content being viewed by others

References

  1. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med 2001; 345: 588–95

    Article  PubMed  CAS  Google Scholar 

  2. Chernow B, Rothl BL. Pharmacological manipulation of the peripheral vasculature in shock: clinical and experimental approaches. Circ Shock 1986; 18: 141–55

    PubMed  CAS  Google Scholar 

  3. Lindner KH, Dirks B, Strohmenger HU, et al. Randomized comparison of epinephrine and vasopressin in patients with out-of-hospital ventricular fibrillation. Lancet 1997; 349: 535–7

    Article  PubMed  CAS  Google Scholar 

  4. Morales DL, Madigan J, Cullinane S, et al. Reversal by vasopressin of intractable hypotension in the late phase of hemor-rhagic shock. Circulation 1999; 100: 226–9

    Article  PubMed  CAS  Google Scholar 

  5. Kochar MS. Hemodynamic effects of lysine-vasopressin in orthostatic hypotension. Am J Kidney Dis 1985; 6: 49–52

    PubMed  CAS  Google Scholar 

  6. Lindberg JS, Copley JB, Melton K, et al. Lysine vasopressin in the treatment of refractory hemodialysis-induced hypotension. Am J Nephrol 1990; 10: 269–75

    Article  PubMed  CAS  Google Scholar 

  7. Rozenfield V, Cheng JWM. The role of vasopressin in the treatment of vasodilation in shock states. Ann Pharmacother 2000; 34: 250–4

    Article  Google Scholar 

  8. Parillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med 1993; 328: 1471–7

    Article  Google Scholar 

  9. Prielipp RC, Butterworth J. Cardiovascular failure and pharmacologic support of the peripheral vasculature after cardiac surgery. New Horiz 1999; 7: 472–88

    CAS  Google Scholar 

  10. Wan S, Yim AP, Vincent JL. Inflammatory response to cardiopulmonary bypass. New Horiz 1999; 7: 462–71

    Google Scholar 

  11. Malcynski JT, Iwanow IC, Burchard KW. Severe pancreatitis: determinants of mortality in a tertiary referral center. Arch Surg 1996 Mar; 131(3): 242–6

    Article  PubMed  CAS  Google Scholar 

  12. Larsen FS, Hansen BA, Blei AT. Intensive care management of patients with acute liver failure with emphasis on systemic hemodynamic instability and cerebral edema: a critical appraisal of pathophysiology. Can J Gastroenterol 2000; 14 Suppl. D: 105–11

    Google Scholar 

  13. Bouachour G, Tirot P, Varache N, et al. Hemodynamic changes in acute adrenal insufficiency. Intensive Care Med 1994; 20: 138–41

    Article  PubMed  CAS  Google Scholar 

  14. Landry DW, Oliver JA. The ATP-sensitive potassium channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest 1992; 89: 2071–4

    Article  PubMed  CAS  Google Scholar 

  15. Sylvester JT, Scharf SM, Gilbert RD, et al. Hypoxic and CO hypoxia in dogs: hemodynamics, carotid reflexes, and cate-cholamines. Am J Physiol 1979; 326: H22–8

    Google Scholar 

  16. Brierley JB, Prior PF, Calverley J, et al. Cyanide intoxication in Macaca mulatta: physiological and neuropathological aspects. J Neurol Sci 1977; 31: 133–57

    Article  PubMed  CAS  Google Scholar 

  17. Chen JM, Cullinane S, Sapanier TB, et al. Vasopressin deficiency and pressor hypersensitivity in hemodynamically unstable organ donors. Circulation 1999; 100 Suppl. 2: 244–6

    CAS  Google Scholar 

  18. Iwai A, Sakano T, Uenishi M, et al. Effects of vasopressin and catecholamines on the maintenance of circulatory stability in brain-dead patients. Transplantation 1989; 48: 613–7

    PubMed  CAS  Google Scholar 

  19. Jackson WF. Ion channels and vascular tone. Hypertension 2000; 35: 173–8

    Article  PubMed  CAS  Google Scholar 

  20. Davies JW. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 1990; 343: 375–7

    Article  PubMed  CAS  Google Scholar 

  21. Keung EC, Li Q. Lactate activates ATP-sensitive potassium channels in guinea pig ventricular myocytes. J Clin Invest 1991; 88: 1772–7

    Article  PubMed  CAS  Google Scholar 

  22. Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rctifying potassium channels in smooth muscle. Physiol Rev 1997; 77: 1165–232

    PubMed  CAS  Google Scholar 

  23. Murphy ME, Brayden JE. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 1995; 486: 47–58

    PubMed  CAS  Google Scholar 

  24. Taylor BS, Geller DA. Molecular regulation of the human inducible nitric oxide synthase (iNOS) gene. Shock 2000; 13: 413–24

    Article  PubMed  CAS  Google Scholar 

  25. Titheradge MA. Nitric oxide in septic shock. Biochim Biophys Acta 1999; 1411: 437–55

    Article  PubMed  CAS  Google Scholar 

  26. Bolotina VM, Najibi S, Palacino JJ, et al. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368: 850–3

    Article  PubMed  CAS  Google Scholar 

  27. Gold JA, Cullinane S, Chen J, et al. Vasopressin as an alternative to norepinephrine in the treatment of milrinone-induced hypotension. Crit Care Med 2000; 28: 249–52

    Article  PubMed  CAS  Google Scholar 

  28. The American Heart Association in Collaboration with the International Liaison Committee on Resuscitation (ILCOR). Part 6: Advanced cardiovascular life support. Section 6: Pharmacology II: agents to optimize cardiac output and blood pressure. Resuscitation 2000; 46: 155–62

    Article  Google Scholar 

  29. Goldstein DJ, Oz MC. Mechanical support for postcardiotomy cardiogenic shock. Semin Thorac Cardiovasc Surg 2000; 12: 220–8

    PubMed  CAS  Google Scholar 

  30. Dünser MW, Mayr AJ, Ulmer H, et al. The effects of vasopressin on systemic hemodynamics in catecholamine-resistant septic and postcardiotomy shock: a retrospective analysis. Anesth Analg 2001; 93: 7–11

    Article  PubMed  Google Scholar 

  31. James JH, Luchette FA, McCarter FD, et al. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 1999; 354: 505–8

    Article  PubMed  CAS  Google Scholar 

  32. Schütz W, Anhäupl T, Gauss A. Principles of catecholamine therapy: 1. characterization of clinically relevant sympatho-mimetics [in German]. Anaesthesiol Intensivmed Notfallmed Schmerzther 2000; 35: 67–81

    Google Scholar 

  33. Tsuneyoshi I, Kammura Y, Yoshimura N. Nitric oxide as a mediator of reduced arterial responsiveness in septic patients. Crit Care Med 1996; 24: 1083–6

    Article  PubMed  CAS  Google Scholar 

  34. Paya D, Stoclet JC. Involvement of bradykinin and nitric oxide in the early hemodynamic effects of lipopolysaccharide in rats. Shock 1995; 3: 376–9

    PubMed  CAS  Google Scholar 

  35. Wutke T. Endokrinology. In: Schmidt RF, Thews G, editors. Human physiology [in German]. Berlin: Springer, 1993:390–420

    Google Scholar 

  36. Thrasher TN, Keil LC. Systolic pressure predicts plasma vasopressin response to hemorrhage and vena caval constriction in dogs. Am J Physiol Regul Integr Comp Physiol 2000; 279: R1035–42

    PubMed  CAS  Google Scholar 

  37. Kasting NW, Mazurek MF, Martin JB. Endotoxin increases vasopressin release independently of known physiologic stimuli. Am J Physiol 1985; 248: E420–4

    PubMed  CAS  Google Scholar 

  38. Chikanza IC, Petrou P, Chrousos G. Perturbations of arginine vasopressin secretion during inflammatory stress: pathophysiologic implications. Ann N Y Acad Sci 2000; 917: 825–34

    Article  PubMed  CAS  Google Scholar 

  39. Mastorakos G, Weber JS, Magikakou MA, et al. Hypothalamic-pituitary-adrenal axis activation and stimulation of systemic vasopressin secretion by recombinant interleukin-6 in humans: potential implications for the syndrome of inappropriate vasopressin secretion [published comment appears in J Clin Endocrinol Metab 1994; 79: 932–3]. J Clin Endocrinol Metab 1994; 79: 934–9

    Article  PubMed  CAS  Google Scholar 

  40. Zelazowski P, Patechv VK, Zelazowska EB, et al. Release of hypothalamic corticotropin-releasing hormone and argininevasopressin by interleukin 1 beta and alpha MSH: studies in rats with different susceptibility to inflammatory disease. Brain Res 1993; 631: 22–6

    Article  PubMed  CAS  Google Scholar 

  41. Muders F, Elsner D, Jandeleit K, et al. Chronic ACE inhibition by quinapril modulates central vasopressinergic system. Cardiovasc Res 1997; 34: 575–81

    Article  PubMed  CAS  Google Scholar 

  42. Calogero AE, Fornito MC, Aliffi A, et al. Role of peripherally infused angiotensin II on the human hypothalamic-pituitary-adrenal axis. Clin Endocrinol 1991; 34: 183–6

    Article  CAS  Google Scholar 

  43. Reaux A, Fournie-Zaluski MC, Llorens-Cortes C. Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metab 2001; 12: 157–62

    Article  PubMed  CAS  Google Scholar 

  44. Argenziano M, Chen JM, Choudhri AF, et al. Management of vasodilatory shock after cardiac surgery: identification of predisposing factors and use of a novel pressor agent. J Thorac Cardiovasc Surg 1998; 116: 973–80

    Article  PubMed  CAS  Google Scholar 

  45. Boldt J, Menges T, Wollbruck M, et al. Continuous i.V. administration of the angiotensin-converting enzyme inhibitor en-alaprilat in the critically ill: effects on regulators of circulatory homeostasis. J Cardiovasc Pharmacol 1995; 25: 416–23

    CAS  Google Scholar 

  46. Eyraud D, Babant S, Dieudonne N, et al. Treatment of intraoperative refractory hypotension with terlipressin in patients chronically treated with an antagonist of the renin-angiotensin-system. Anesth Analg 1999; 88: 980–4

    PubMed  CAS  Google Scholar 

  47. Yamamoto T, Kimura T, Ota K, et al. Central effects of endothelin-1 on vasopressin and atrial natriuretic peptide release and cardiovascular and renal function in conscious rats. J Cardiovasc Pharmacol 1991; 17 Suppl. 7: 316–8

    Article  Google Scholar 

  48. Shichiri M, Hirata Y, Kanno K, et al. Effect of endothelin-1 on release of arginine vasopressin from perifused rat hypothalamus. Biochem Biophys Res Commun 1989; 263: 1332–7

    Article  Google Scholar 

  49. Standaert DG, Cechetto DF, Needleman P, et al. Inhibition of the firing of vasopressin neurons by atriopeptin. Nature 1987; 329: 151–3

    Article  PubMed  CAS  Google Scholar 

  50. Obana K, Naruse M, Inagami T, et al. Atrial natriuretic factor inhibits vasopressin secretion from rat posterior pituitary. Biochem Biophys Res Commun 1985; 132: 1088–94

    Article  PubMed  CAS  Google Scholar 

  51. Share L, Kimura T, Matsui K, et al. Metabolism of vasopressin. Fed Proc 1985; 44: 59–61

    PubMed  CAS  Google Scholar 

  52. Matsui K, Share L, Brooks DP, et al. Splanchnic clearance of plasma vasopressin in the dog: evidence for prehepatic extraction. Am J Physiol 1983; 245: E611–5

    PubMed  CAS  Google Scholar 

  53. Birnbaumer M. Vasopressin receptors. Trends Endocrinol Metab 2000; 11: 406–10

    Article  PubMed  CAS  Google Scholar 

  54. Fox AW, May RE, Mitch WE. Comparison of peptide and nopeptide receptor-mediated responses in the rat tail artery. J Cardiovasc Pharmacol 1992; 20: 282–9

    Article  PubMed  CAS  Google Scholar 

  55. Garcia-Villalon AL, Garcia JL, Fernandez N, et al. Regional difference in the arterial response to vasopressin: role of endothelial nitric oxide. Br J Pharmacol 1996; 118: 1848–54

    Article  PubMed  CAS  Google Scholar 

  56. Moursi MM, van Wylen DG, D' Alecy LG. Regional blood flow changes in response to mildly pressor doses of trglycyl dsamino lysine and arginine vasopressin in the conscious dog. J Pharmacol Exp Ther 1985; 232: 360–8

    PubMed  CAS  Google Scholar 

  57. Steckel RJ, Dolin A, MacAlpin RN, et al. Differential effects of pitressin on blood flow and oxygen exctraction in canine vascular beds. AJR Am J Roentgenol 1978; 130: 1025–32

    PubMed  CAS  Google Scholar 

  58. Voelckel WG, Lindner KH, Wenzel V, et al. Effects of vasopressin and epinephrine on splanchnic blood flow and renal function during and after cardiopulmonary resuscitation in pigs. Crit Care Med 2000; 28: 1083–8

    Article  PubMed  CAS  Google Scholar 

  59. Wallace AW, Tunin CM, Shoukas AA. Effects of vasopressin on pulmonary and systemic vascular mechanics. Am J Physiol 1989; 257: H1228–34

    PubMed  CAS  Google Scholar 

  60. Okamura T, Ayajiki K, Fujioka H, et al. Mechanisms underlying arginine vasopressin induced relaxation in monkey isolated coronary arteries. J Hypertens 1999; 17: 673–8

    Article  PubMed  CAS  Google Scholar 

  61. Suzuki Y, Satoh S, Oyama H, et al. Vasopressin mediated vasodilation of cerebral arteries. J Auton Nerv Syst 1994; 49 Suppl. 1: S129–132

    Article  PubMed  CAS  Google Scholar 

  62. Russ RD, Walker BR. Role of nitric oxide in vasopressinergic pulmonary vasodilatation. Am J Physiol 1992; 262: H743–7

    PubMed  CAS  Google Scholar 

  63. Xu YJ, Gopalakrishnan V. Vasopressin increases cytosolic free [Ca2+] in the neonatal rat cardiomyocyte: evidence for V1 subtype receptors. Circ Res 1991; 69: 239–45

    Article  PubMed  CAS  Google Scholar 

  64. Fujisawa S, Ilijima T. On the inotropic actions of arginine vasopressin in ventricular muscle of the guinea pig heart. Jpn J Pharmacol 1999; 81: 309–12

    Article  PubMed  CAS  Google Scholar 

  65. Van der Bent V, Church DJ, Vallotton MB, et al. [Ca2+]i and protein kinase C in vasopressin-induced prostacyclin and ANP release in rat cardiomyocytes. Am J Physiol 1994; 266: H597–605

    PubMed  Google Scholar 

  66. Cases A, Munoz I, Jimenez W, et al. Arginine vasopressin infusion increases plasma levels of atrial natriuretic factor in humans. Horm Metab Res 1993; 24: 127–9

    Article  Google Scholar 

  67. Filep J, Rosenkranz B. Mechanisms of vasopressin-induced platelet aggregation. Thromb Res 1987; 45: 7–15

    Article  PubMed  CAS  Google Scholar 

  68. Heck M, Fresenius M. Coagulation. In: Heck M, Fresenius M, editors. Repetitorium anaesthesiology [in German]. Berlin: Springer, 1999:881–918

    Google Scholar 

  69. Mannucci PM, Canciani MT, Rota L, et al. Response of factor VIII/von Willebrand factor to dDAVP in healthy subjects and patients with haemophilia A and von Willebrand' s disease. Br J Haematol 1981; 47: 283–93

    Article  PubMed  CAS  Google Scholar 

  70. Mannucci PM, Remuzzi G, Pusineri F, et al. Deamino-8-D-arginine vasopressin shortens the bleeding: time in uremia. N Engl J Med 1983; 308: 8–12

    Article  PubMed  CAS  Google Scholar 

  71. Salzman EW, Weinstein MJ, Weintraub RM, et al. Treatment with desmopressin acetate to reduce blood loss after cardiac surgery. N Engl J Med 1986; 314: 1402–6

    Article  PubMed  CAS  Google Scholar 

  72. Matsuoka T, Wisner DH. Hemodynamic and metabolic effects of vasopressin blockade in endotoxin shock. Surgery 1997; 121: 162–73

    Article  PubMed  CAS  Google Scholar 

  73. Landry DW, Levin HR, Gallant EM, et al. Vasopressin pressor hypersensitivity in vasodilatory septic shock. Crit Care Med 1997; 25: 1279–82

    Article  PubMed  CAS  Google Scholar 

  74. Tsuneyoshi I, Yamada H, Kakihana Y, et al. Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit Care Med 2001; 29: 487–93

    Article  PubMed  CAS  Google Scholar 

  75. Holmes CL, Walley KR, Chittock DR, et al. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med 2001; 27: 1416–21

    Article  PubMed  CAS  Google Scholar 

  76. Bilezikjian LM, Vale WW. Regulation of ACTH secretion from corticotrophs: the interaction of vasopressin and CRF. Ann N Y Acad Sci 1987; 512: 85–96

    Article  PubMed  CAS  Google Scholar 

  77. Kornberger E, Prengel AW, Krismer A, et al. Vasopressin-mediated adrenocorticotropin release increases plasma cortisol concentrations during cardiopulmonary resuscitation. Crit Care Med 2000; 28: 3517–21

    Article  PubMed  CAS  Google Scholar 

  78. Lee B, Yang C, Chen TH, et al. Effect of AVP and oxytocin on insulin release: involvement of V1b receptors. Am J Physiol 1995; 269: E1095–100

    PubMed  CAS  Google Scholar 

  79. Richardson SB, Laya T, VanOoy M. Vasopressin-stimulated insulin secretion and inositol phosphate production: interactions with glucose and phorbol esters. J Endocrinol 1995; 145: 221–6

    Article  PubMed  CAS  Google Scholar 

  80. Pittman QJ, Chen X, Mouihate A, et al. Arginine vasopressin, fever and temperature regulation. Prog Brain Res 1998; 119: 383–92

    Article  PubMed  CAS  Google Scholar 

  81. Wenzel V, Lindner KH. Employing vasopressin during cardiopulmonary resuscitation and vasodilatory shock as a lifesaving vasopressor. Cardiovasc Res 2001; 51: 529–41

    Article  PubMed  CAS  Google Scholar 

  82. De Kock M, Laterre PF, Andruetto P, et al. Ornipressin (Por 8): an efficient alternative to counteract hypotension during combined general/epidural anesthesia. Anesth Analg 2000; 90: 1301–7

    Article  PubMed  Google Scholar 

  83. GrigaT, May B, Schmidt FW. Portal hypertension. In: Schmidt E, Schmidt FW, Manns MP, editors. Liver diseases [in German]. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH 2000: 922–75

    Google Scholar 

  84. Scharte M, Meyer J, Van Aken H, et al. Hemodynamic effets of terlipressin (a synthetic analog of vasopressin) in healthy and endotoxemic sheep. Crit Care Med 2001; 29: 1756–60

    Article  PubMed  CAS  Google Scholar 

  85. Westphal M, Ball C, Van Aken V, et al. Titration of terlipressin and vasopressin in endotoxaemic sheep [abstract]. Intensive Care Med 2001; 27 Suppl. 2: A182

    Google Scholar 

  86. Schwartz J, Reid IA. Effect of vasopressin blockade on blood pressure regulation during hemorrhage in conscious dogs. Endocrinology 1981; 109: 1778–80

    Article  PubMed  CAS  Google Scholar 

  87. Baker CH, Sutton ET, Zhou Z, et al. Microvascular vasopressin effects during endotoxin shock in the rat. Circ Shock 1990; 30: 81–59

    PubMed  CAS  Google Scholar 

  88. Errington ML, Rocha e Silva Jr M. Vasopressin clearance and secretionduring haemorrhage in normal dogs and in dogs with experimental diabetes insipidus. J Physiol 1972; 227: 395–418

    PubMed  CAS  Google Scholar 

  89. Morales DS, Gregg D, Helman DN, et al. Arginine vasopressin in the treatment of 50 patients with postcardiotomy vasodilatory shock. Ann Thorac Surg 2000; 69: 102–6

    Article  PubMed  CAS  Google Scholar 

  90. Landry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contributes to vasodilation in septic shock. Circulation 1997; 95: 1122–5

    Article  PubMed  CAS  Google Scholar 

  91. Goldsmith SR. Vasopressin deficiency and vasodilation of septic shock. Circulation 1998; 97: 292–3

    Article  PubMed  CAS  Google Scholar 

  92. Cooke CR, Wall BM, Jones GV, et al. Reversible vasopressin deficiency in severe hypernatremia. Am J Kidney Dis 1993; 22: 44–52

    PubMed  CAS  Google Scholar 

  93. Argenziano M, Choudhri AF, Oz MC, et al. A prospective randomized trial of arginine vasopressin in the treatment of vasodilatory shock after left ventricular assist device placement. Circulation 1997; 96 Suppl. 2: 286–90

    CAS  Google Scholar 

  94. Cowley AW, Quillen EQ, Skelton MM. Role of vasopressin in cardiovascular regulation. Fed Proc 1983; 42: 3170–6

    PubMed  CAS  Google Scholar 

  95. Annane D, Trabold F, Sharshar T, et al. Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med 1999; 160: 458–65

    PubMed  CAS  Google Scholar 

  96. Salzman AL, Vromen A, Denenberg A, et al. KATP-channel inhibition improves hemodynamics and cellular energetics in hemorrhagic shock. Am J Physiol 1997; 272: H688–94

    PubMed  CAS  Google Scholar 

  97. Umino T, Kusano E, Muto S, et al. AVP inhibits LPS- and IL-lbeta-stimulated NO and cGMP via V1 receptor in cultured rat mesangial cells. Am J Physiol 1999; 276: F433–41

    PubMed  CAS  Google Scholar 

  98. Kusano E, Tian S, Umino T, et al. Arginine vasopressin inhibits interleukin-1 beta-stimulated nitric oxide and cyclic guanosine monophosphate production via the V1 receptor in cultured rat vascular smooth muscle cells. J Hypertens 1997; 15: 627–32

    Article  PubMed  CAS  Google Scholar 

  99. Nambi P, Whitman M, Aiyar N, et al. Inhibition of formation of cyclic AMP and cyclic GMP by vasopressin in smooth-muscle cells is insensitive to pretussis toxin. Biochem J 1988; 254: 449–53

    PubMed  CAS  Google Scholar 

  100. Nambi P, Whitman M, Gessner G, et al. Vasopressin-mediated inhibition of atrial natriuretic factor-stimulated cGMP accumulation in an established smooth muscle cell line. Proc Natl Acad Sci U S A 1986; 83: 8492–5

    Article  PubMed  CAS  Google Scholar 

  101. Hamu Y, Kanmura Y, Tsuneyoshi I, et al. The effects of vasopressin on endotoxin-induced attenuation of contractile responses in human gastroepiploic arteries in vitro. Anesth Analg 1999; 88: 542–8

    PubMed  CAS  Google Scholar 

  102. Bouachour G, Tirot P, Guello JP, et al. Adrenocortical function during septic shock. Intensive Care Med 1995; 21: 57–62

    Article  PubMed  CAS  Google Scholar 

  103. Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med 1999; 27: 723–32

    Article  PubMed  CAS  Google Scholar 

  104. Kolb E. Endothelins: properties, formation, mechanism of action and significance [in German]. Z Gesamte Inn Med 1991; 46: 355–60

    PubMed  CAS  Google Scholar 

  105. Balakrishnan SM, Gopalakrishnan V, McNeill JR. Endothelin contributes to the hemodynamic effects of vasopressin in spontaneous hypertension. Eur J Pharmacol 1997; 334: 55–60

    Article  PubMed  CAS  Google Scholar 

  106. Levin ER. Endothelins as cardiovascular peptides. Am J Nephrol 1996; 16: 246–51

    Article  PubMed  CAS  Google Scholar 

  107. Hollenberg SM, Piotrowski MJ, Parrillo JE. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to endothelin-1 in septic rats. Am J Physiol 1997; 272: R969–74

    PubMed  CAS  Google Scholar 

  108. Schaller MD, Waeber B, Nussberger J, et al. Angiotensin II, vasopressin, and sympathetic activity in conscious rats with endotoxemia. Am J Physiol 1985; 249: H1086–92

    PubMed  CAS  Google Scholar 

  109. Hollenberg SM, Tangora JJ, Piotrowski MJ, et al. Impaired microvascular vasoconstrictive responses to vasopressin in septic rats. Crit Care Med 1997 May; 25(5): 869–73

    Article  PubMed  CAS  Google Scholar 

  110. Roth BL, Spitzer JA. Altered hepatic vasopressin and alpha 1-adrenergic receptors after chronic endotoxin infusion. Am J Physiol 1987; 252: E699–702

    PubMed  CAS  Google Scholar 

  111. Rodriguez de Turco EB, Spitzer JA. Impairments in vasopressin-stimulated inositol lipid metabolism in hepatocytes of septic rats. Circ Shock 1988; 25: 299–307

    Google Scholar 

  112. Spitzer JA, Rodriguez de Turco EB, Deaciuc IV, et al. Perturbation of transmembrane signaling mechanisms in acute and chronic endotoxemia. Prog Clin Biol Res 1987; 236: 401–18

    Google Scholar 

  113. Malay MB, Ashton RC, Landry DW, et al. Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma 1999; 47: 699–705

    Article  PubMed  CAS  Google Scholar 

  114. Bracco D, Chioléro RL, Revelly JP. Systemic and splanchnic haemodynamic effects of vasopressin administration in vasodilatory shock [abstract]. Intensive Care Med 2001; 27 Suppl. 2: A15

    Google Scholar 

  115. Eichinger MR, Walker BR. Enhanced pulmonary arterial dilation to arginine vasopressin in chronically hypoxic rats. Am J Physiol 1994; 267: H2413–9

    PubMed  CAS  Google Scholar 

  116. Patel BM, Chittock DR, Russell JA, et al. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 2002; 96: 576–82

    Article  PubMed  CAS  Google Scholar 

  117. Argenziano M, Chen JM, Cullinane S, et al. Arginine vasopressin in the management of vasodilatory hypotension after cardiac transplantation. J Heart Lung Transplant 1999; 18: 814–7

    Article  PubMed  CAS  Google Scholar 

  118. Rosenzweig EB, Star TJ, Chen JM, et al. Intravenous arginine-vasopressin in children with vasodilatory shock after cardiac surgery. Circulation 1999; 100 Suppl. 2: 182–6

    Article  CAS  Google Scholar 

  119. Diinser M, Mayr A, Stallinger A, et al. Cardiac Performance during vasopressin infusion in catecholamine-resistant postcardiotomy shock. Intensive Care Med 2002; 28: 746–51

    Article  Google Scholar 

  120. Lamarre P, Perreault B, Lesur O. Vasopressin and blood pressure support for pancreatitis-induced systemic inflammatory response syndrome with circulatory shock. Pharmacotherapy 2001; 21: 506–8

    Article  PubMed  CAS  Google Scholar 

  121. Katz K, Lawler J, Wax J, et al. Vasopressin pressor effects in critically ill children during evaluation for brain death and organ recovery. Resuscitation 2000; 47: 33–40

    Article  PubMed  CAS  Google Scholar 

  122. Yoshioka T, Sugimoto H, Uenishi M, et al. Prolonged hemodynamic maintenance by the combined administration of vasopressin and epinephrine in brain death: a clinical study. Neurosurgery 1986; 18: 565–7

    Article  PubMed  CAS  Google Scholar 

  123. Shelly MP, Greatorex R, Calne RY, et al. The physiological effects of vasopressin when used to control intraabdominal bleeding. Intensive Care Med 1988; 14: 526–31

    Article  PubMed  CAS  Google Scholar 

  124. Ruskin A. Pitressin test of coronary insufficiency. Am J Heart 1947; 34: 569

    Article  CAS  Google Scholar 

  125. Morrison HM, Doepfner P, Park GR. Vasopressin in septic shock: a useful or dangerous agent [letter]? Intensive Care Med 1991; 17: 242–3

    Article  PubMed  CAS  Google Scholar 

  126. Sirinek KR, Adcock DK, Levine BA. Simultaneous infusion of nitroglycerin and nitroprusside to offset adverse effects of vasopressin during portosystemic shunting. Am J Surg 1989; 157: 33–7

    Article  PubMed  CAS  Google Scholar 

  127. Beller BM, Trevino A, Ubran E. Pitressin-induced myocardial injury and depression in a young woman. Am J Med 1971; 51: 675–9

    Article  PubMed  CAS  Google Scholar 

  128. Fernandez N, Garcia JL, Garcia-Villalon AL, et al. Coronary vasoconstriction produced by vasopressin in anesthetized goats: role of vasopressin V1 and V2 receptors and nitric oxide. Eur J Pharmacol 1998; 342: 225–33

    Article  PubMed  CAS  Google Scholar 

  129. Bax WA, Van der Graaf PH, Stam WB, et al. [Arg8]vasopressin-induced responses of the human isolated coronary artery: effects of non-peptide receptor antagonists. Eur J Pharmacol 1995; 285: 199–202

    Article  PubMed  CAS  Google Scholar 

  130. Vanhoutte PM, Katusic ZS, Sheperd JT. Vasopressin induces endothelium-dependent relaxations of cerebral and coronary, but not of systemic arteries. J Hypertens 1984; Suppl. 2: 421–2

    CAS  Google Scholar 

  131. Wenzel V, Kern KB, Hilwig RW, et al. The left anterior descending coronary artery dilates after arginine vasopressin during normal sinus rhythm, and ventricular fibrillation with cardiopulmonary resuscitation [abstract]. Circulation 2001; 104 Suppl. 2: 2974

    Google Scholar 

  132. Evora PR, Pearson PJ, Schaff HV, et al. Arginine vasopressin induces endothelium-dependent vasodilatation of the pulmonary artery: V1-receptor-mediated production of nitric oxide. Chest 1993; 103: 1241–5

    Article  PubMed  CAS  Google Scholar 

  133. Overand PT, Teply JF. Vasopressin for the treatment of refractory hypotension after cardiopulmonary bypass. Anesth Analg 1998; 86: 1207–9

    PubMed  CAS  Google Scholar 

  134. Morris DC, Dereczyk BE, Grzybowski M, et al. Vasopressin can increase coronary perfusion pressure during human cardiopulmonary resuscitation. Acad Emerg Med 1997; 4: 878–83

    Article  PubMed  CAS  Google Scholar 

  135. Krismer AC, Wenzel V, Voelckel W, et al. Use of vasoactive drugs during cardiopulmonary resuscitation. Curr Opin Crit Care 1999; 5: 193–200

    Article  Google Scholar 

  136. Weig HJ, Laugwitz KL, Moretti A, et al. Enhanced cardiac contractility after gene transfer of V2 vasopressin receptors In vivo by ultrasound-guided injection or transcoronary delivery [published comment appears in Circulation 2000; 101: 1498–9]. Circulation 2000; 101: 1578–85

    Article  PubMed  CAS  Google Scholar 

  137. Welt FG, Rutlen DL. Effect of vasopressin on systemic capacity. Am J Physiol 1991; 261: H1494–8

    PubMed  CAS  Google Scholar 

  138. Mayr A, Knotzer H, Pajk W, et al. Risk factors associated with new-onset tachyarrhythmias after cardiac surgery: a retrospective analysis. Acta Anesthesiol Scand 2001; 45: 543–9

    Article  CAS  Google Scholar 

  139. Stump GI, Wallace AA, Gilberto DB, et al. Arrhythmogenic potential of positive inotropic agents. Basic Res Cardiol 2000; 95: 186–98

    Article  PubMed  CAS  Google Scholar 

  140. Nillson G, Lindblom P, Palmer B, et al. The effect of triglycyl-lysine-vasopressin (terlipressin INN, Glypressin) on skin blood flow, measured with laser dopller flowmetry, thermography and plethysmography: a dose-response study. Scand J Plast Reconstr Surg Hand Surg 1987; 21: 149–57

    Article  Google Scholar 

  141. Achauer BM, Hernandez J, Parker A. Burn excision with intraoperative vasopressin. J Burn Care Rehabil 1989; 10: 375–8

    Article  PubMed  CAS  Google Scholar 

  142. Thomas TK. Cutaneous manifestations of intravenous vasopressin therapy. Am J Gastroenterol 1985; 80: 704–5

    PubMed  CAS  Google Scholar 

  143. Greenwald RA, Rheingold OJ, Chiprut RO, et al. Local gangrene: a complication of peripheral pitressin therapy for bleeding esophageal varices. Gastroenterol 1978; 74: 744–6

    CAS  Google Scholar 

  144. Reilly PM, Wilkins KB, Fuh KC, et al. The mesenteric hemodynamic response to circulatory shock: an overview. Shock 2001; 15: 329–43

    Article  PubMed  CAS  Google Scholar 

  145. Takala J. Non-conventional vasopressors in septic shock: effects on hepatosplanchnic blood flow. Schweiz Med Wochenschr 2000; 130: 1937–41

    PubMed  CAS  Google Scholar 

  146. McNeill JR, Stark RD, Greenway CV. Intestinal vasoconstriction after hemorrhage: roles of vasopressin and angiotensin. Am J Physiol 1970; 219: 1342–7

    PubMed  CAS  Google Scholar 

  147. Noguera I, Medina P, Segarra G, et al. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery. Br J Pharmacol 1997; 122: 431–8

    Article  PubMed  CAS  Google Scholar 

  148. Hansen EF, Strandberg C, Hojgaard L, et al. Splanchnic haemodynamics after intravenous terlipressin in anaesthesised healthy pigs. J Hepatol 1999; 30: 503–10

    Article  PubMed  CAS  Google Scholar 

  149. Varga C, Pavo I, Lamarque D, et al. Endogenous vasopressin increases acute endotoxin shock-provoked gastrointestinal mucosal injury in the rat. Eur J Pharmacol 1998; 352: 257–61

    Article  PubMed  CAS  Google Scholar 

  150. Sun Q, Dimopoulos GD, Nguyen DN, et al. Low dose vasopressin in the treatment of septic shock in sheep [abstract]. Intensive Care Med 2001; 27 Suppl. 2: A113

    Google Scholar 

  151. Roberts PR, Wall MH, Black KW, et al. Enterai nutrition increases mesenteric blood flow in rats during vasopressin administration [abstract]. 2000 ASA Meeting Abstracts; Oct 2000

  152. Jenkins SA, Mooney B, Devitt P, et al. The effect of vasopressin on hepatic artery flow in the rat. Clin Exp Pharmacol Physiol 1984; 11: 521–6

    Article  PubMed  CAS  Google Scholar 

  153. Fasth S, Haglund U, Hulten L, et al. Vascular responses of small intestine and liver to regional infusion of vasopressin. Acta Chir Scand 1981; 147: 583–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported, in part, by the Lorenz Böhler Fonds; and the Austrian Science Foundation Grant P14169-MED, Vienna, Austria. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter R. Hasibeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dünser, M.W., Wenzel, V., Mayr, A.J. et al. Management of Vasodilatory Shock. Drugs 63, 237–256 (2003). https://doi.org/10.2165/00003495-200363030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200363030-00001

Keywords

Navigation