Functional hypothalamic amenorrhea: hypoleptinemia and disordered eating

J Clin Endocrinol Metab. 1999 Mar;84(3):873-7. doi: 10.1210/jcem.84.3.5551.

Abstract

Because the exact etiology of functional, or idiopathic, hypothalamic amenorrhea (FHA) is still unknown, FHA remains a diagnosis of exclusion. The disorder may be stress induced. However, mounting evidence points to a metabolic/nutritional insult that may be the primary causal factor. We explored the thyroid, hormonal, dietary, behavior, and leptin changes that occur in FHA, as they provide a clue to the etiology of this disorder. Fourteen cycling control and amenorrheic nonathletic subjects were matched for age, weight, and height. The amenorrheic subjects denied eating disorders; only after further, detailed questioning did we uncover a higher incidence of anorexia and bulimia in this group. The amenorrheic subjects demonstrated scores of abnormal eating twice those found in normal subjects (P < 0.05), particularly bulimic type behavior (P < 0.01). They also expended more calories in aerobic activity per day and had higher fiber intakes (P < 0.05); lower body fat percentage (P < 0.05); and reduced levels of free T4 (P < 0.05), free T3 (P < 0.05), and total T4 (P < 0.05), without a significant change in rT3 or TSH. Cortisol averaged higher in the amenorrheics, but not significantly, whereas leptin values were significantly lower (P < 0.05). Bone mineral density was significantly lower in the wrist (P < 0.05), with a trend to lower BMD in the spine (P < 0.08). Scores of emotional distress and depression did not differ between groups. The alterations in eating patterns, leptin levels, and thyroid function present in subjects with FHA suggest altered nutritional status and the suppression of the hypothalamic-pituitary-thyroid axis or the alteration of feedback set-points in women with FHA. Both lower leptin and thyroid levels parallel changes seen with caloric restriction. Nutritional issues, particularly dysfunctional eating patterns and changes in thyroid metabolism, and/or leptin effects may also have a role in the metabolic signals suppressing GnRH secretion and the pathogenesis of osteopenia despite normal body weight. These findings suggest that the mechanism of amenorrhea and low leptin in these women results mainly from a metabolic/nutritional insult.

MeSH terms

  • Adult
  • Amenorrhea / blood*
  • Amenorrhea / complications
  • Amenorrhea / etiology*
  • Bone Density / physiology
  • Feeding and Eating Disorders / etiology*
  • Feeding and Eating Disorders / physiopathology
  • Female
  • Humans
  • Hypothalamic Diseases / complications*
  • Leptin
  • Proteins / analysis*
  • Reference Values
  • Thyroid Hormones / blood

Substances

  • Leptin
  • Proteins
  • Thyroid Hormones