Effects of priming exercise on the speed of adjustment of muscle oxidative metabolism at the onset of moderate-intensity step transitions in older adults

Am J Physiol Regul Integr Comp Physiol. 2012 May 15;302(10):R1158-66. doi: 10.1152/ajpregu.00269.2011. Epub 2012 Mar 14.

Abstract

Aging is associated with a functional decline of the oxidative metabolism due to progressive limitations of both O(2) delivery and utilization. Priming exercise (PE) increases the speed of adjustment of oxidative metabolism during successive moderate-intensity transitions. We tested the hypothesis that such improvement is due to a better matching of O(2) delivery to utilization within the working muscles. In 21 healthy older adults (65.7 ± 5 yr), we measured contemporaneously noninvasive indexes of the overall speed of adjustment of the oxidative metabolism (i.e., pulmonary Vo(2) kinetics), of the bulk O(2) delivery (i.e., cardiac output), and of the rate of muscle deoxygenation (i.e., deoxygenated hemoglobin, HHb) during moderate-intensity step transitions, either with (ModB) or without (ModA) prior PE. The local matching of O(2) delivery to utilization was evaluated by the ΔHHb/ΔVo(2) ratio index. The overall speed of adjustment of the Vo(2) kinetics was significantly increased in ModB compared with ModA (P < 0.05). On the contrary, the kinetics of cardiac output was unaffected by PE. At the muscle level, ModB was associated with a significant reduction of the "overshoot" in the ΔHHb/ΔVo(2) ratio compared with ModA (P < 0.05), suggesting an improved O(2) delivery. Our data are compatible with the hypothesis that, in older adults, PE, prior to moderate-intensity exercise, beneficially affects the speed of adjustment of oxidative metabolism due to an acute improvement of the local matching of O(2) delivery to utilization.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / physiology
  • Aged
  • Aging / physiology*
  • Cardiac Output / physiology
  • Exercise / physiology*
  • Exercise Tolerance / physiology*
  • Hemoglobins / metabolism
  • Humans
  • Male
  • Middle Aged
  • Muscle, Skeletal / metabolism*
  • Oxidation-Reduction
  • Oxygen / metabolism*
  • Oxygen Consumption / physiology
  • Time Factors

Substances

  • Hemoglobins
  • Oxygen